Recent Developments in Transformer Inference Deployment on
FPGA Platforms: A Survey

Preprint — 2026

Arjan Blankestijn
Computer Architecture for Embedded
Systems, University of Twente
Enschede, The Netherlands
a.blankestijn-2@student.utwente.nl

Abstract

With the rapid and continuous growth in the incorporation of ma-
chine learning models based on the Transformer architecture, capa-
ble deployment is in high demand. In this context, capable deploy-
ment refers to operational performance aspects, e.g., throughput
and latency, as well as efficiency aspects, e.g., energy consump-
tion. When it comes to the task of inference using such models,
purpose-built hardware accelerators provide a lucrative alterna-
tive to common deployment choices, such as Central Processing
Units (CPUs) and Graphics Processing Units (GPUs). The Field Pro-
grammable Gate Array (FPGA) platforms category is an example
of such alternative accelerators, promising implementation flexibil-
ity, energy efficiency, improved latency and suitability for on-site
deployment. We investigate the most recent advances, trends, and
design choices for Transformer inference on FPGA platforms. We
perform a systematic literature review, extracting and delving into
preferred techniques for implementation and optimisation. This
study and the provided taxonomy of topics could act as a guide for
researchers from the academia and industry alike.

Keywords

Transformer, FPGA, Hardware accelerator, Compression, Model
synthesis

1 Introduction

Machine Learning (ML) has dramatically reshaped the landscape
of computational algorithm design in numerous contexts. The in-
herent data parallelism present in ML models has proven to be
highly advantageous. Additionally, specialised hardware acceler-
ator architectures have been built and incorporated, increasing
the computational performance of ML models even further. Well-
known examples of such specialised hardware architectures beyond
Central Processing Units (CPUs) are, Graphics Processing Units
(GPUs), Neural Processing Units (NPUs), Field-Programmable Gate
Arrays (FPGAs), and Neuromorphic computing. Some of these de-
signs pre-existed and found to be effective ML accelerators for
different reasons, i.e., inherent computational compatibilities or
fine-grained customisability. Two main examples are GPUs and
FPGA:s.

Amongst these hardware accelerator architectures, FPGAs stand
out by portraying unique characteristics. FPGAs have attracted
substantial attention as a viable architecture for accelerating deep

Uraz Odyurt
Faculty of Engineering Technology,
University of Twente
Enschede, The Netherlands
u.odyurt@utwente.nl

Amirreza Yousefzadeh
Computer Architecture for Embedded
Systems, University of Twente
Enschede, The Netherlands
a.yousefzadeh@utwente.nl

learning workloads. Their reconfigurability, together with the ca-
pacity for custom, hardware-level optimisations, makes FPGAs par-
ticularly attractive for ML inference. Example use-cases benefiting
from hardware-level optimisations are requirements for low-latency
operation, high-throughput operation, or any combination with
desired balance between latency and throughput. FPGA-based plat-
forms present a compelling alternative to conventional CPUs and
GPU accelerators, especially where power footprint and physical
size requirements impose limitations, or where on-site deployment
and installation is required.

While established deep learning ML model architectures, e.g.,
Convolutional Neural Networks (CNNs), have been taking advan-
tage of hardware accelerators, particularly FPGAs, there is an emerg-
ing architecture, the Transformer. The Transformer model architec-
ture [1] has gained prominence due to its powerful ability to handle
distant and obscure dependencies and to efficiently parallelise com-
putations. Originally conceived for tasks such as machine transla-
tion, the Transformer architecture has evolved into a fundamental
component for many high-performance models. However, the com-
putational load and memory demands associated with Transformer
inference remain significant, with much higher demands compared
to the established model architectures. These challenges are espe-
cially apparent when Transformer models are intended for real-time
applications and deployed in resource-constrained environments.

In short, as opposed to older, more established ML model architec-
tures, the methodology and tooling for deployment of Transformers
on FPGAs remain incomplete. We strive to capture the current state-
of-the-art for the context of Transformer inference running on FPGA
platforms. As such, answers to a number of questions are to be
sought after:

e What are the performance indicators?

e How to improve these performance indicators?

e Which implementation or resource management aspects are to
be leveraged to achieve better results?

e Which optimisations are considered? Which tooling is available
and what are the limitations of such tooling?

Scope of the survey. We provide a systematic literature review,
aiming to consolidate and critically evaluate existing research on
Transformer model inference on FPGAs. It must be emphasised
that the focus is inference and not training. As this particular angle
is rather active, we focus on the more recent research from the last
2 years, 2024-May 2025.

Following this introduction, the background and motivation,
covering alternative surveys and fundamental topics, is provided

https://orcid.org/0009-0005-4628-7689
https://orcid.org/0000-0003-1094-0234
https://orcid.org/0000-0002-2967-5090

in Section 2. The survey methodology itself is given in Section 3,
followed by the extracted taxonomy of topics in Section 4. Details on
storage, tooling, model compression, and IP design from the covered
articles are provided in Sections 5 to 8, respectively. Analysis of
performance metrics and trends is elaborated in Section 9, alongside
concluding remarks in Section 10.

2 Background and motivation

In recent years, growing amounts of research effort has focused
on adapting the Transformer model designs to leverage the advan-
tages provided by the FPGA technology. Researchers have explored
various optimisation strategies, ranging from quantization and
pruning to custom memory management and parallel processing
frameworks, in order to bridge the gap between the theoretical
performance of Transformers and the practical limitations posed by
FPGA hardware. Furthermore, as plotted in Figure 1, the number of
articles on this topic has risen significantly in the last 2 years, with
153 and 51 articles for 2024 and 2025 till the end of May, respectively.
This sharp increase in the number of published articles reflects the
increased momentum in channelled research effort.

fury
[}
o
-
w
w

140 1

=P
o N
o o

75
56

(=2}
o

51

Number of articles
©
o

N
o

15 19

N
(=)

2017 2018 2019 2020 2021 2022 2023 2024 2025
Jan-May

Year

Figure 1: Distribution of article counts per year (till the end of
May 2025), focusing on the topic of Transformer inference on
FPGA’s and considering the three repositories: IEEE Xplore,
Scopus, and arXiv as sources. The scope for this survey is the
last two bars (in green).

As such, now can be considered as yet another interesting point
in time to observe emerging trends, consider reached conclusions,
and identify stated future work approaches. Surveys on the topic
have been conducted in the past, with one year frequencies, but
not covering the 2024-2025 span. Notably, in works by Kang et
al. [2] and Chitty-Venkata et al. [3], authors have surveyed the
topic extensively. Other, use-case specific surveys exist as well,
focusing on the applications on Transformers in specific areas,
such as Vision Transformers (ViT) [4] and Large Language Models
(LLMs) [5]. A detailed coverage of these surveys is listed in Table 1.

As the field is extremely active and rapidly evolving, we have
opted to focus on the latest developments and achievements. Ac-
cordingly, this survey targets all FPGA-based Transformer inference
articles published during the year 2024 and the year 2025 till the
end of May, using a clear and reproducible selection methodology,

A. Blankestijn et al.

Table 1: Previous surveys and their coverage as a point of
comparison to this survey. Note that last listed year, usually
the publication year, is never fully covered. These surveys
do not specify the exact collection period.

Year(s) Platform(s) Use-case Systematic Survey

-2023 ASIC,FPGA, Non-specific No [3]
GPU, CPU

-2024 ASIC,FPGA Non-specific No [2]

2025 ASIC,FPGA, ViT Yes [4]
GPU

—2024 ASIC,FPGA, LLM No [5]
GPU, CPU

i.e., systematic. Our survey does not focus on specific use-case
categories.

2.1 Transformer architecture

The Transformer architecture, introduced by Vaswani et al. [1],
is built entirely on attention mechanisms and is widely used for
sequence processing use-cases, e.g., natural language processing
and computer vision. At a high level and in its original form, a
Transformer consists of an encoder—decoder structure. Many mod-
ern applications of the Transformer architecture make use of the
encoder block, e.g., BERT, or the decoder block, e.g., GPT-style
models, without the other.

Each encoder layer comprises a multi-head self-attention seg-
ment, followed by a position-wise feed-forward network. The self-
attention mechanism allows every token in the input sequence to
attend to all other tokens, enabling the model to capture both short-
and long-range dependencies. For an input matrix X, three learned
linear projections produce the Query, Key, and Value matrices:

Q=XW,, K=XWg, V=XWy,

where Wy, W, and Wy are the corresponding weight matrices.
Accordingly, the attention output is computed as

. (QKT)
Attention(Q, K, V) = SoftMax \'A
Vi
where dy. is the dimensionality of the key vectors. Through multi-
head attention, this computation is replicated across multiple heads,
enabling the model to capture diverse relational patterns.

Each decoder layer adds an additional masked self-attention seg-
ment to the design, to preserve autoregressive behaviour. A cross-
attention segment that attends to the encoder outputs is included
as well. Both encoder and decoder layers make use of residual con-
nections and layer normalisation [6] to ensure stable gradients and
improve training efficiency.

The attention mechanism is permutation-invariant, for which
Transformers rely on position embeddings to inject order informa-
tion into it. These can be either fixed sinusoidal embeddings or
learned embeddings. The architectural design eliminates the need
for recurrence or convolution, allowing for highly parallel compu-
tation. Figure 2 (inspired by [1]) depicts the standard Transformer
architecture with all the aforementioned segments.

Transformer Inference Deployment on FPGA: Survey

Output
probabilities

Add & Norm [«
Feed
Forward
> Add & Norm | ((Add & Norm J;
T T
Feed Multi-Head
@ Forward Attention I
[[
& | 4 4 4 &
o] 5]
g > Add & Norm] ((Add & Norm J= g
c 1 1 @
w . Masked o
M read Multi-Head
Attention
() XXX
¢ S }—() Positional Positional (D— S)
A Encoding Encoding A
Input Output
embedding embedding
Inputs Output tokens

(previous step)

Figure 2: The original Transformer model architecture with
encoder and decoder segments.

2.2 FPGA technology

Field-Programmable Gate Arrays (FPGAs) are reconfigurable hard-
ware platforms that allow designers to implement custom digi-
tal circuits, tailored to specific computational workloads [7]. Un-
like fixed-function Application-Specific Integrated Circuits (ASICs)
or general-purpose CPUs, an FPGA consists of an array of pro-
grammable logic blocks. Blocks such as Look-Up Tables (LUTs),
Flip-Flops (FF), and interconnect resources can be reconfigured after
manufacturing. This reconfigurability makes FPGAs attractive to
implement purpose-built accelerators, e.g., for accelerating emerg-
ing ML architectures, such as Transformers, where computational
patterns evolve rapidly [8].

Modern FPGAs also include a set of hardened resources, provid-
ing high-performance arithmetic and memory capabilities. These
typically include Digital Signal Processing (DSP) blocks for effi-
cient multiply-accumulate operations, Block RAMs (BRAMs) and
UltraRAMs (URAMs) for low-latency on-chip storage, and high-
bandwidth interfaces for connecting to off-chip Dynamic Random-
Access Memory (DRAM) [9, 10]. By tailoring computation to these
resources, designers can exploit massive fine-grained parallelism
and reduce the memory bottlenecks commonly encountered in deep
learning workloads [11].

Akey advantage of FPGAs is the ability to define bespoke dataflows
and memory hierarchies. Designers can structure computation
around streaming architectures, systolic arrays, or pipelined parallel
units, depending on the characteristics of the target algorithm [12].
On-chip buffers are frequently used to minimise expensive off-chip

memory accesses, improving latency. Data reuse strategies, such as
tiling, caching, and weight buffering, play a central role in achieving
high throughput [13].

FPGA development flows typically rely on Hardware Description
Languages (HDLs) such as Verilog or VHDL. However, High-Level
Synthesis (HLS) tools have become increasingly common, allow-
ing hardware to be generated from C/C++-like specifications or
domain-specific toolchains [14, 15]. This has significantly reduced
development time and made FPGA-based acceleration more ac-
cessible in ML research and industry. This is due to higher level
abstractions, i.e., lower implementation complexities, provided by
HLS.

Overall, FPGAs offer a flexible and energy-efficient platform
for accelerating compute- and memory-intensive tasks. Their cus-
tomisability, combined with support for high degrees of parallelism,
makes them particularly well suited for implementing Transformer
components such as attention mechanisms, matrix multiplications,
and hierarchical buffering schemes [16]. Needless to say, there is a
strong element of use-case specificity involved, making implemen-
tation of reusable multi-use designs a constant challenge.

3 Survey method & pruning protocols

The literature considered for this review has been gathered and
selected in a systematic and semi-automatic fashion. the processing
and pruning of collected query responses is performed using Python
scripts developed by the authors. The code is available online!. An
overview diagram of the steps with article counts resulting from
each step is given in Figure 3.

Repositories. All covered articles are collected from three source
repositories, IEEE Xplore?, Scopus?, and arXiv*. The collection from
arXiv is performed dynamically through the available Application
Programming Interface (API).

Query. A standard query, made up of highly relevant terms was
formulated, reflecting our focused topics. The query,

“transformer AND fpga AND (inference OR ai OR
acceleration)”,

was used for searching within all three repositories, resulting in a
total of 411 articles.

Pruning - Duplicate removal. Since multiple repositories are con-
sidered and especially in the presence of preprint versions from
arXiv, pruning for duplicates is necessary. This pruning step re-
sulted in 335 articles remaining.

Pruning - Date filter (< 2024). A date filter applied to bring the
focus to publications from 2024 onwards, till the end of May 2025.
This pruning step resulted in 161 articles remaining.

Pruning - Abstract focus. Subsequently, all articles are filtered
based on whether or not the keyword “transformer” is present in
the abstract. This pruning step is to ensure the inclusion of articles

!https://virtualdetector.com/trackcore-f/repository.html
Zhttps://ieeexplore.ieee.org/Xplore/home.jsp
Shttps://www.scopus.com/

*https://arxiv.org/
Shttps://info.arxiv.org/help/api/index.html

https://virtualdetector.com/trackcore-f/repository.html
https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.scopus.com/
https://arxiv.org/
https://info.arxiv.org/help/api/index.html

A. Blankestijn et al.

Duplicate removal
and publication year
filtering

Initial query

—

Pruning of unrelated
articles and surveys

Pruning of training
focused articles

Rank papers and
select the top batch

= =5

\/ \/

\

y

\ \

p
Query:
“transformer AND fpga AND
(inference OR ai OR
accelerator)”

- Removal of duplicate articles,

resulting from multiple

repositories

Result => 335 articles abstracts
- “transformer” and “fpga” as
mandatory terms, as well as one
term from the set “inference, ai,
accelerator”

| Result => 411 articles

- Filtering to exclude articles
published before the year 2024
Result => 161 articles

abstracts

(- Removal of articles outside the
scope, based on the presence
of the term “transformer” in

Result => 113 articles
- Removal of surveys, based on
the presence or terms “survey”

or “review” in either titles or

| Result => 108 articles

- Removal of articles focusing
on training, based on the
presence of the term “training”
in title or its occurrence in
abstract more than once
Result => 96 articles

- Ranking of papers on a score
based on total special keywords
occurrence frequency

- Select the top batch from the
ranked set with scores 25 or
higher

Result => 57 articles

Figure 3: Article collection and pruning workflow, with details on pruning protocols and resulting article counts after each step.

with Transformer models as the primary focus. It resulted in 113
articles remaining.

Pruning - Survey removal. The response to the query naturally
includes surveys relevant to the topic, which are to be set aside.
Articles with terms “survey” or “review” in either the title or the
abstract are considered surveys and filtered. This pruning step
resulted in 108 articles remaining.

Pruning - Articles on training. Finally, as our aim is to cover
inference, articles with a primary focus on training are to be pruned.
This is done based on whether the keyword “training” is included in
the title or if it occurs more than once in the abstract. The remaining
articles after this pruning step is 96.

Ranking. Collection of articles during any survey will result any
a spectrum of articles in terms of relevance. To limit the amount
of articles investigated for this review to the ones with the highest
relevancy, a ranking is applied to the collection. Points are awarded
to each article based on the frequency of keywords, selected from
sub-topics relevant to our topic, within the title and the abstract.
Table 2 covers the list of keywords per sub-topic category. The
articles are ranked based on the number of points and with 25
as the threshold score. The top 57 articles, achieving 25 points or
higher, are considered for this survey. This collection is our primary
source. The most relevant of these 57 articles are processed by the
authors.

4 Taxonomy of Transformer inference on
FPGAs

Given the collected articles and based on our review of these, we
provide a taxonomy of approaches and techniques covered by these
literature while deploying Transformer models on FGPA platforms
for inference, drawn in Figure 4.

The taxonomy provides a natural hierarchy, encompassing the
two main aspects addressed in the literature, Implementation and
Optimisation. We shall use this hierarchy to organise the remain-
der of this survey. The taxonomy is derived from the analysis of
recurring themes and design choices from the collected articles.
The authors have incorporated their knowledge of similar imple-
mentations to arrive at a more meaningful structure. While not

Table 2: Keyword groups for ranking articles with scores
based on occurrence frequency.

Category Keywords

Synthesis HLS, high level synthesis, high-level synthesis,
register transfer level

Memory memory, storage, on-chip, off-chip

Compression compression, quantization, pruning, sparsity,
sparse

Acceleration acceleration, accelerator, reconfigurable de-
vices, systolic, fpga

Al terms ai, artificial intelligence, inference

Misc. terms weight, weights, computation, efficient, con-

strain

exhaustive, Figure 4 reflects the dominant implementation and op-
timisation techniques reported and serves as a conceptual guide
for positioning individual contributions. The performed ranking
of articles based on relevancy to the topic elevates the taxonomy
higher in its representativeness.

5 Model weights storage

Memory transfer can be a big bottleneck in inference latency. There-
fore, the way that the model weights and biases are stored and
handled can have a big impact on performance. Various techniques
exist for storing the weights and biases of a model. The two most
popular approaches are storing of all weights on-chip or dynami-
cally loading of parameters from off-chip memory, as needed.

Ideally, all parameters are permanently stored on-chip, i.e., on
the FPGA, in order to minimise memory transfer. However, this is
not always feasible when dealing with large models and/or smaller
FPGAs. Additionally, this approach can be impractical for generic
accelerators aimed at supporting multiple types of models. As such,
a rather common technique is to store the weights in external
memory or have the weights loaded dynamically trough the host
CPU. Note that most hardware platforms provide a CPU, often time
an ARM core, alongside the FPGA, hence the host CPU.

Transformer Inference Deployment on FPGA: Survey

Transformer inference
on FPGA

Implementation Optimisation
:tvoe:gg; Dlzign Computation Compression
Off-chip i:: Quantization
. || Non-linear .
On-chip HLS | et Pruning
Hybrid
i:: Tooling I—> SoftMax
Languages
— PE design
— RTL
i:: Systolic array
t: Tooling Distinct PE
Languages
— Pipelining

':: Partial
Full

Figure 4: Extracted taxonomy of prevalent approaches for
Transformer inference on FPGA platforms, summarising the
main subjects, design dimensions, and optimisation tech-
niques identified in the surveyed literature.

5.1 Off-chip storage

Accelerators making use of off-chip memory access are generally
capable of supporting many different models and model sizes, since
these are not limited by the available on-chip memory. In one such
approach, Kabir et al. [17] propose a Transformer accelerator that
is runtime-adaptive and makes use of off-chip memory access. The
architecture makes use of separate Load Units for inputs, weights,
and biases. For instance, on-chip weight buffers for the attention
computation are 2-dimensional arrays, where the array size de-
pend on the tiling size. For each iteration when handling each tile,
the partial data is loaded from external memory. Since biases are
generally smaller in size, these are stored in registers. The biases
are loaded into registers while the attention module is computing
the Q, K, and V matrices. Afterwards, the biases are then added to
the matrices. FAMOUS [18] is another accelerator from the same
authors that employs a very similar system. The weight matrices
are loaded in on-chip memory for every iteration and the biases are
transferred to internal registers during the matrix multiplication
step.

Optimisations to reduce the number of memory transfers can still
be made, even when making use of off-chip memory. For example,
Li and Chen [19] propose a Tiled Matrix Multiplication Accelerator
for self-attention in Transformers. This accelerator focuses only on
the Q, K, and V projections. For each matrix multiplication, the Q,
K, and V weight matrices are transferred to the FPGA. However,

in order to minimise memory transfers, the input matrix is only
transferred to the FPGA once for the Q projection. Then, the input
matrix is stored in an on-chip buffer for K and V projections.

5.2 On-chip storage

The most performance-effective way to store a model’s parame-
ters is to store these on-chip. On-chip storage minimises off-chip
memory access, which in turn has a big impact on overall perfor-
mance. As mentioned, considering limited on-chip memory, storing
all weights and activations on-chip is not always possible. Another
advantage of permanently storing weights using on-chip storage is
to facilitate the use of extensive pipelining, as exemplified by Guo
et al. with HG-PIPE [20]. In order to take advantage of pipelining,
the authors of HG-PIPE propose an implementation that stores as
many weights and activations on-chip as possible.

Alternatively, instead of having all weights fixed in on-chip
memory, it is also possible to store these in on-chip buffers with
the possibility of loading in different weights for different models.
Take ME-ViT for instance, authored by Marino [21], which is an
accelerator for Vision Transformers. This accelerator will load in
all parameters from off-chip memory and store these in on-chip
buffers before starting the inference. Parameters that have to be
re-used multiple times during a single inference are strategically
buffered in on-chip memory. Then, the Memory Efficient Process-
ing Element (ME-PE) is able to perform in 3 different modes: Linear
Projection, Multi-Headed Self-Attention and Multi-Layer Percep-
tron. Any intermediate results during inference are also kept in
on-chip buffers. This architecture ensures that there are minimal
amount of memory transfers between off-chip and on-chip variants.
This implementation does suffer from on-chip memory limitations.
It must be noted that this architecture does allow for inference
of multiple different models, compared to storing of parameters
permanently on-chip.

Yet another example of an accelerator storing all the model
weights and activations in on-chip memory is ProTEA, authored
by Kabir et al. [22]. The authors propose an efficient tiling strategy,
allowing large models to be stored in on-chip memory. ProTEA is
runtime configurable, enabling inference of different models. All
the model weights are loaded into on-chip memory ahead of the
inference.

5.3 Performance comparison

Table 3 presents a comparison in resource consumption between
articles employing off-chip memory access and articles storing
model weights on-chip during inference. It is important to note
that a considerable number of articles do not make it clear if the
incorporated accelerator loads in all weights from off-chip memory
into on-chip memory prior to inference, or if the implementation
accesses off-chip memory during inference. We would qualify the
former approach as “on-chip memory storage” as there would be
no off-chip memory access during the inference itself. Therefore,
it is likely that a significant portion of implementations that we
have categorised as “off-chip” are actually qualify as “on-chip”. It
is difficult to make precise comparisons here. Nevertheless, it is
interesting to see if a trend can be noticed.

As it can be seen in Table 3, accelerators making use of off-chip
memory access generally have a higher resource consumption. With
significantly more FF, LUTs, DSPs and BRAM usage. At the same
time, accelerators keeping all the weights in on-chip memory have
a significantly higher throughput and much lower latency. This
may seem illogical, as one would expect that implementations with
higher resource consumption should result in better performance.
However, this can be explained by the memory access time required
due to the incorporation of off-chip memory, which is a considerable
bottleneck, severely limiting both throughput and latency.

We can conclude from Table 3 that in general, utilising as much
persistent on-chip storage as possible results in much lower infer-
ence latencies and higher throughput. However, if the goal is to
make an accelerator suitable for a wider variety of models, then
the only possible architecture could be one where the weights are
not stored on-chip, but rather off-chip.

6 Incorporated tooling

Various techniques are available to develop solutions for FPGAs.
These techniques might vary depending on the model or manu-
facturer of the considered FPGA. We can categorise the available
tooling and programming languages under two main existing de-
sign levels, Register-Transfer Level (RTL) and High-Level Synthesis
(HLS). HLS tools simplify development substantially, as there is no
requirement for knowledge of low-level RTL-design and hardware
description languages. The opposite is the case with RTL tooling,
with a focus on low-level hardware design, which also provides
the opportunity for ad hoc optimisations. Considering these two
design level, i.e., design methodologies, the prevalence of tooling
from each is investigated below, alongside the performance and
resource consumption impact analysis of selected tooling.

Table 4 lists how often each type of tooling is used within the
analysed pool of articles in this survey. The table is divided into
two categories: RTL and HLS. The RTL category includes Verilog,
SystemVerilog, and VHDL, while the HLS category includes Vitis,
Versel ACAP, hls4ml, and Unknown tooling. The Unknown category
is for articles not specifying the utilised tooling.

Unfortunately, not all articles specify the incorporated tooling.
For the articles that do specify it, the distribution between the usage
of RTL tooling and HLS tooling is rather evenly split, with 12 articles
making use of RTL tooling and 13 utilising HLS tooling. Within
RTL tooling, the Hardware Description Language (HDL) Verilog® is
by far the most popular choice. Only 2 articles used other tooling,
namely [31] and [48] using SystemVerilog and VHDL, respectively.
A similar trend can be seen within HLS tooling, where Vitis HLS is
by far the most popular choice. Other tooling used includes Versel
ACAP (by [36]) and hls4ml (by [49]).

6.1 Frameworks

A small selection of articles set out to develop or extended frame-
works for the development of Transformer accelerators. Jiang et
al. [49] extended the popular HLS tool, hls4ml [56, 57] to include
support for any Tensorflow-based Transformer model. hls4ml is an
open-source Python package that can translate machine learning
models from frameworks like Keras and PyTorch into HLS code for

6Also standardised as IEEE 1364: https://standards.ieee.org/ieee/1364/2052/

A. Blankestijn et al.

deployment on FPGAs. The authors of [49] have used Vivado in
the implementation of the Transformer for hls4ml.

On the RTL side, Ling et al. [48] developed VHDL templates
which enable developers to translate existing models onto an FPGA
accelerator, without a deep understanding of FPGA development
workflow. In order to generate an accelerator, Python scripts trans-
late these models using VHDL templates, resulting in VHDL files.
This approach ensures a seamless translation of trained and quan-
tized models into FPGA accelerators. The authors note that in the
future they aim to support mixed-precision quantization and to
improve the energy efficiency of resulting accelerators.

6.2 HLS vs RTL

Table 5 provides a comparison of the average resource usage, as
well as performance metrics, i.e., throughput in Giga Operations
Per Second (GOPS) and power in Watts. The comparison is between
articles using RTL design level tooling with the ones utilising HLS
design level tooling. It is important to consider that the architecture
and design of the accelerator at hand has a much bigger impact on
these figures. However, these figures can portray an overall trend.
For instance, articles making use of HLS tooling, on average seem to
have much more FF and LUT consumption. Additionally, the power
consumption is on average twice that of articles making use of
RTL tooling. This shows that in general, using RTL tooling results
in more efficient designs. Interestingly, the average throughput is
rather higher for HLS tooling designs. One possible explanation for
this is that HLS tooling allows for more time and effort to be spent
on efficient computations, i.e., allowing the tooling to convert the
model design to the best possible RTL design.

7 Model compression

Various model compression techniques exist in order to reduce
model size, enabling efficient usage of on-chip storage instead of
off-chip storage. Furthermore, certain pruning techniques can re-
duce the model size and complexity, which in turn can result in
increased inference performance. Popular methods include quanti-
zation and pruning. The following covers and compares commonly
used quantization and pruning techniques. This includes compar-
ing different bit-widths and if the same quantization levels can be
used across different types of parameters and layers. The impact on
latency, throughput and accuracy of compression techniques must
be taken into account as well.

7.1 Quantization

Using 8-bit quantization is by far the most common practice in
articles using quantization, 13 out of 30. Some papers use higher bit-
widths, e.g., 12 or 16 bits ([52] and [26, 38], respectively), in order to
retain a higher accuracy. On the contrary, other implementations
opt for even lower bit-widths in order to optimise and reduce com-
putational latency even further. Another approach is to make use
of mixed quantization, e.g., [28, 31]. In this approach, important
parameters are quantized with a higher bit-width, whereas param-
eters that have less influence on the final accuracy are quantized
with a lower bit-width.

https://standards.ieee.org/ieee/1364/2052/

Transformer Inference Deployment on FPGA: Survey

Table 3: Resource utilisation and performance comparison between storage approaches, for off-chip and on-chip. 6 articles
with unknown storage approach are not covered here. Note that not every field is provided in every article. Missing cells are

designated with “n/a”.

FF LUT DSP BRAM ‘ Platform ‘ Throughput (GOPS) Power (W) Latency (ms) ‘ Article
Storage approach: Off-chip
114K 128K 768 n/a ZCU102 1023.3 23.48 n/a [23]
n/a 77K 147 n/a VCK190 n/a n/a n/a [24]
n/a n/a 1024 n/a ZCU102 780 7.43 n/a [25]
1507K 557K 5096 1581 XCU200 2750 28.23 0.08 [26]
n/a 271K 1863 609.5 Alveo U50 301.9 14.35 n/a [27]
n/a 391K 3612 n/a n/a 40 11.9 n/a [17]
943K 574K 6345 1253 Alveo U280 n/a n/a n/a [28]
n/a n/a n/a n/a Alveo U55C n/a n/a n/a [29]
n/a n/a n/a n/a n/a n/a 9 17.51 [30]
704K 993K 3612 n/a VCK190 44 n/a 165 [22]
222K 115K 1248 n/a KV260 n/a 10 50 [31]
143K 123K 1850 458 ZCU102 97.04 11.5 25.76 [32]
2446K 1593K 10848 1746 AMD V80 n/a n/a n/a [33]
n/a n/a n/a n/a ZCU102 385.5 9.86 n/a [34]
162K 122K 78 691.5 ZCU102 3894.74 8.68 n/a [35]
n/a n/a n/a n/a VCK190 n/a 47.5 56 [36]
n/a 493K 5016 n/a Alveo U280 12239 n/a 14.57 [37]
n/a n/a 3482 1162 Alveo U50 1420 48 n/a [38]
578K 472K 9024 1520 VCU128 8204 43.2 n/a [39]
661K 1284K 4157 3148 Alveo U55C 184 n/a 0.597 [18]
103K 71K 1050 126 KV260 2.85 n/a 110 [19]
682500 50605556 3842 1200.15 | — 1453.66 20.075 49.9177 Total average
Storage approach: On-chip
n/a n/a n/a n/a Alveo U200 n/a 31.8 n/a [21]
73K 110K 0 177 ZCU102 944.87 1.39 n/a [40]
n/a 669K 312 1006 VCK190 17795 46.7 n/a [20]
291K 161K 1945 812 ZCU102 n/a 16.71 1.77 [41]
548K 274K 2520 912 ZCU102 1387.59 7.95 n/a [42]
139K 118K 2147 283 XCZU9EG 2330.2 21.37 13.98 [43]
1083K 544K 10812 1903 Alveo U250 986.3 n/a 1.17 [44]
426800 312666.67 2956 848.83 - 4688.79 20.987 5.64 Total average

HG-PIPE, by Guo et al. [20], makes extensive use of LUT-based
MAC units, i.e., multiply—accumulate operators implemented us-
ing FPGA lookup tables instead of dedicated DSP blocks. If the
operands are quantized to 3 bits, the multiplication operation can
be decomposed into six boolean functions, each consuming 6 bits.
Only 6 LUT-6s are required for such an operation. This technique
reduces the number of required DSPs from more than 10 000 to only
744. Furthermore, reducing the bit-width from 4 to 3 only reduces
the final accuracy from 73.30% to 69.60%.

Jiang et al. in [49] have extended the hls4ml framework [57] to
support the Transformer model. hls4ml allows for varying precision
across different layers. The authors have tested various fixed pre-
cision configurations, including both Post Training Quantization
(PTQ) and Quantization Aware Training (QAT) across three differ-
ent Transformer models. The authors settled on using 6 bits for
two of these models and 10 bits for the last model. Using any lower

bit-widths would result in a significant drop in the Area Under
the Receiver Operating Characteristics curve (AUC). This shows
that the optimum quantization bit-width can heavily depend on
the model under evaluation.

Du et al. [40] propose an accelerator for binary Transformers. In
this case, all model parameters are 1-bit quantized. To be precise,
all weighs are binarised to {-1, 1}, activations of ReLU and SoftMax
are binarised to {0, 1}, and all other activations are binarised to {-1,
1}. The resulting architecture uses significantly fewer resources
and provides higher throughput compared to other sparsity-aware
accelerators. The major downside to this approach is that it is not
feasible to quantize a model to 1-bit during post-training quantiza-
tion.

Xiang et al. [51] make use of an Activation-aware Weight Quan-
tization (AWQ) technique, in order to significantly reduce the mem-
ory footprint. This technique is based on the fact that only 1% of

Table 4: Comparison of synthesis tooling used in different
article, with a significant number lacking elaboration.

Design Language/Tool = Count Articles
level
Verilog 10 [45, 46, 23, 25, 40, 41,
RTL 34, 37, 39, 47]
SystemVerilog 1 [31]
VHDL 1 [48]
Vivado/Vitis HLS 11 [21, 24,17, 29,30, 22,
32, 35, 38, 18, 19]
HLS Versal ACAP 1 [36]
hls4ml 1 [49]
Unknown 2 [20, 50]
Unknown Unknown 11 [51, 26, 28, 42, 33, 43,

44,52, 53, 54, 55]

the model weights may have a significant impact on model per-
formance. Thus, preserving these weights can maintain accuracy
while reducing the memory footprint. The technique works by
performing scaling on a per-channel basis, based on the activation
distribution. This way, the entire matrix can be quantized to very
lower precisions (INT4, INT3) while maintaining model accuracy.
Evaluation of this quantization technique results in a 55.10% re-
duction in memory footprint with only a 2.82 percentage points
reduction in model accuracy compared to a baseline.

HEAT by Zhao et al. [23] is a Transformer Accelerator employ-
ing a hybrid-precision quantization scheme. The resulting model
weights are quantized to an average of 5.71 bits, with only a 0.526%
accuracy loss for the model. This technique works by splitting the
weight matrices based on a predefined threshold. Values within this
threshold are considered “normal” and values outside of the thresh-
old are considered outliers. The normal values are quantized to 5
bits while the outliers are quantized to 8 bits. Choosing a suitable
threshold value is important. In prior work the threshold is set to a
constant value. However, in [23], the threshold is determined by a
line search based on a constant outlier ratio of 3.5%.

Byun et al. use a Hessian-driven quantization approach [60]

n [41]. The authors note that using such an approach has chal-
lenges, such as the fact that quantized weights using a parameter-
wise approach result in irregular precision patterns. This is not
ideal for hardware accelerators. To overcome such limitations, the
authors propose a row-wise approach. This technique works by
splitting the matrices into important and unimportant rows. The
aggregate parameter sensitivity is determined for each row within
every matrix of each layer. The rows are sorted based on their sen-
sitivity. Then, all weights are quantized with lower precision while
quantizing only the top 1% of weight rows with a higher precision.
This process is repeated iteratively until the desired level of accu-
racy is achieved. The architecture of the accelerator is designed to
be able to efficiently handle both the low- and the high-precision
calculations. The resulting accelerator increases energy efficiency
up to 14.57 times compared to existing accelerators.

Another method for mixed precision quantization is implemented
by Li et al. [31]. This article implements a Transformer model for the

A. Blankestijn et al.

task of license plate recognition. In order to minimise memory over-
head, the authors propose a mixed precision quantization method,
optimising the allocation of low bit-width for each layer. Addition-
ally, a Dynamic Precision Adaption (DPA) algorithm is proposed
to optimise the allocation between the integer and fractional part.
This algorithm considers the magnitude of input and allocates the
appropriate bit-width for the largest input value in order to avoid
overflow. The resulting algorithm increases the model weight com-
pression by 2.44 times, as opposed to 1.95 times compression when
using 8-bit fixed point quantization, while maintaining identical
model accuracy.

7.2 Model pruning

Li et al. [46] note that the output of the inner product of the Q and
K matrices can contain up to 95% zeroes or close to zero values.
These terms have little contribution to the overall model accuracy.
Eliminating the computation of these products can significantly
reduce the amount of computation, while not affecting the model
accuracy by much. The sparsity cannot be predicted before the
actual matrix computation though. However, the authors propose
a dynamic sparse computation method. First, a low-precision 4-bit
computation between the Q and K matrices is performed. This re-
sults in a mask matrix, indicating positions of non-zero values. This
mask is used to select the K matrix during full 16-bit computation.
Compared to other accelerators, this implementation can result in
improved throughput and energy efficiency.

Wang [45] proposes a block-wise balanced pruning technique
for model compression. The technique works by first splitting up
the parameter matrix into smaller blocks of predetermined sizes.
Then, pruning is performed for each block, such that each block
has the same number of parameters removed. Pruning is done by
ranking parameters in descending order. The smallest P parameters
are removed depending on the pruning ratio, P. The second step
is to use an efficient memory storage pattern that makes use of a
binary bitmap, indicating non-zero values. Finally, the actual non-
zero values are stored in a row-major order. This pruning technique
maintains a model accuracy of 97.70% while reaching an 87.00%
pruning ratio.

For FNM-Trans, by Zhang et al. [26], authors propose an accel-
erator that makes use of full N : M Sparsity. N : M sparsity is a
structured sparsity technique where there are N non-zero elements
for every M elements. FNM-Trans does apply N : M sparsity to
both the attention mechanism and weights. The authors propose a
pruning algorithm to obtain high sparsity without impacting final
model accuracy by a significant amount. The algorithm works in
two stages. The first stage starts with N = M for both attention and
weights. Then, N, and N,, are reduced with 1, followed by a model
retraining using the new N, and N,, parameters. This process of
slowly reducing N and subsequent trainings is continued until the
model accuracy drops too much. The second stage is very similar
to the first stage, except that instead of reducing both N, and N,, at
the same time, first N, is reduced until the minimum Nj, is reached.
The same is done with N,,. The resulting model has up to 93.75%
attention sparsity and up to 75% weight sparsity with only a 3.43%
reduction in model accuracy.

Transformer Inference Deployment on FPGA: Survey

Table 5: Average resource usage and performance metrics, covering throughput (in GOPS) and power (in Watts), compared
between RTL vs HLS design level tooling. Note that not every field is provided in every article. Missing cells are designated

with “n/a”.
FF LUT DSP BRAM ‘ Platform ‘ Throughput (GOPS) Power (W) ‘ Article
Tooling category: RTL
169K 125K 1032 n/a ZCU102 695.37 4.78 [45]
152K 208K 832 n/a ZCU102 634.27 3.72 [46]
114K 128K 768 n/a ZCU102 1023.3 23.48 [23]
n/a n/a 1024 n/a ZCU102 780 7.43 [25]
73K 110K 0 177 ZCU102 944.87 1.39 [40]
291K 161K 1945 812 ZCU102 n/a 16.71 [41]
222K 115K 1248 n/a KV260 n/a 10 [31]
n/a 1008K 9091 1819 | Alveo U250 n/a n/a [58]
n/a n/a n/a n/a ZCU102 385.5 9.86 [34]
n/a 493K 5016 n/a Alveo U280 1223.9 n/a [37]
578K 472K 9024 1520 VCU128 8204 43.2 [39]
n/a n/a n/a n/a n/a n/a n/a [48]
228428 313555 2998 1082 - 2093 13 Total average
Tooling category: HLS
n/a n/a n/a n/a Alveo U200 n/a 31.8 [21]
n/a 77K 147 n/a VCK190 n/a n/a [24]
n/a 669K 312 1006 VCK190 17795 46.7 [20]
n/a 391K 3612 n/a n/a 40 11.9 [17]
n/a n/a n/a n/a Alveo U55C n/a n/a [29]
n/a n/a n/a n/a n/a n/a 9 [30]
704K 993K 3612 n/a Alveo U55C 44 n/a [22]
143K 123K 1850 458 ZCU102 97.04 11.5 [32]
162K 122K 78 691.5 ZCU102 3894.74 8.68 [35]
n/a n/a n/a n/a VCK190 n/a 47.5 [36]
n/a n/a 3482 1162 | Alveo U50 1420 48 [38]
607K 833K 6225 1440 VU9P n/a n/a [59]
661K 1284K 4157 3148 Alveo U55C 184 n/a [18]
n/a n/a n/a n/a n/a n/a n/a [49]
103K 71K 1050 126 KV260 2.85 n/a [19]
396666 507000 2452 1147 - 2934 26.885 Total average

8 IP design optimisations

Different computation and architecture designs that can be used for
Transformer inference. Often, some form of Processing Elements
(PE) are considered. Some implementations include designing dedi-
cated PEs for specific calculations, whereas others employ generic
PEs used for various purposes. Beyond PE designs, techniques such
as data reuse or pipelining may be considered to increase through-
put. Finally, various ways of increasing performance for computing
non-linear functions, such as the SoftMax function, has been opted
for.

8.1 Computation: SoftMax and non-linear
functions

The SoftMax function has a significant performance impact on
Transformer inference in FPGAs, due to its reliance on expensive
operations. These operations, e.g., exponentiation and division, are

highly inefficient on FPGA hardware. The frequent use of such oper-
ations in attention layers leads to an increase in computational and
memory requirements, while its sequential nature limits parallelism
and optimisation options.

A popular method of implementing the SoftMax function is
through the use of Look-Up Tables (LUTs). For instance, Li [46] has
implemented such a SoftMax computation. However, the author
notes that for a 16-bit SoftMax computation, the look-up table
will be too large and will not fit onto the available memory. A
more efficient SoftMax computation can be achieved by assuming
a predefined threshold value and finding the maximum attention
score. Then, for all other attention scores, if the difference with the
maximum score is bigger than the threshold, it is discarded. In this
manner, a minimum valid score is recorded and all valid entries
between 1 and the threshold can be stored in a table. Each valid
score is subtracted by the minimum value and is used in a look-up
table.

The authors of SWAT, Bai et al. [29], note that standard imple-
mentations of Transformer models involve 3 distinct sequential
steps: QK multiplication, SoftMax, and SV multiplication. Often,
each step is broken down into smaller tile-wise operations. How-
ever, since the SoftMax function is row-wise data dependent, it
is not possible to compute it in a tiling window. This results in
high number of memory transfers for loading and storing tile-wise
intermediate results. Instead, the authors propose a kernel fusion
optimisation technique. The SoftMax function is divided into two
separate components: a numerator that does not depend on other
elements of the row, and the denominator that depends on the
sum of the exponential of all elements of the same row. In this
fashion, the denominator can be placed after the SV multiplication
step, allowing the fusion of all three steps into a “unified row-wise
kernel”. The restructuring of the SoftMax function [29] is noted in
mathematical terms in Equation (1).

2= S Sy = 3 R
ij = inVnj = n.j
n=0 o n=0 Zﬁo exp(si,l)
H
1
Z eXp(Si,n)Vn,j (l)

Sk exp(Siy) £

A similar approach is followed in SALTS by Chen et al. [34], a
flexible self-attention accelerator with Long Token Support. The
authors note that the original SoftMax operation “requires travers-
ing the input vector three times: element-wise exponent, reduced
summation, and element-wise division”. By re-arranging the Soft-
Max computation, a fully pipelined design can be realised. Qin et
al. [38] have also employed the same technique.

8.2 Architecture designs: PE design

A large majority of FPGA accelerator implementations employ
Processing Elements (PEs) as fundamental building blocks in their
design. A PE is a design module dedicated to a specific computation
or set of operations. Most works adopt architectures composed of
multiple PEs, but differ in how computation is distributed amongst
them. A common approach is the use of systolic arrays consisting of
many small, identical PEs, where each PE performs a simple, local
operation and data flows regularly between neighbouring elements.
Other implementations organise their architecture around multiple
larger, functionally distinct PEs, with each PE responsible for a
discrete computation stage or kernel. These architectural strategies
are not necessarily mutually exclusive, and several designs com-
bine elements of both to balance parallelism, resource utilisation,
and design complexity. Furthermore, it is not always clearly distin-
guishable from the descriptions in the article which architectural
elements are used in a given implementation. Based on the articles
surveyed in this work, at least 25 employ PEs arranged in a sys-
tolic array, while at least 14 use architectures composed of several
distinct PEs. Both collections are listed in Table 6.

An example of an implementation making use of different PE
types is FAMOUS [18]. The architecture consist of 3 different mod-
ules, each with its own unique PE type. The QKV module is respon-
sible for calculating the query, key and value matrices. The next
module, called the QK module, is responsible for the matrix multi-
plication between the Q and K matrices and applying the SoftMax

A. Blankestijn et al.

Table 6: List of articles taking advantage of different PE imple-
mentation approaches, which are not necessarily mutually
exclusive.

PE approach Count Articles

[46, 21, 51, 23, 25, 40, 26, 41, 52, 17,
28, 22, 31, 32, 33, 43, 34, 35, 36, 38,
50, 39, 55, 18, 44]

[45, 46, 23, 26, 22, 31, 32, 33, 34, 36,
38, 39, 18, 44]

Systolic arrays 25

Distinct PEs 14

function. Finally, the SV module is responsible for multiplication
with the Value matrix.

For FlightLLM by Zeng et al. [28], a multi-core design has been
employed, where each core includes a Matrix Processing Engine
(MPE). Each MPE consists of multiple Matrix Processing Units that
perform matrix calculations. The MPE supports two separate modes,
an MM mode for Matrix-Matrix multiplication and an MV mode
for Matrix-Vector multiplication.

8.3 Architecture designs: Pipelining

Pipelining in FPGA design is an approach where operations are
divided into separate stages, with each stage performing part of
the computation. These stages are connected in sequence, each
operating in parallel on different data during every clock cycle. Such
a design increases throughput, as new data can enter the pipeline
before the preceding data has finished processing, allowing for more
efficient use of hardware resources. While in some architectures
only a specific computation or part of the inference is pipelined [22],
other architectures are designed with full pipelining in mind [20].

ProTEA [22] is an example of an architecture that does not nec-
essarily implement a fully pipelined architecture, but does make
use of pipelining within single computation steps. ProTEA has an
architecture consisting of different PEs, targeting specific compu-
tations. The number of PEs depends on the unrolling factor and
initiation interval of the pipelined loop.

An instance of a fully pipelined architecture is HG-PIPE [20].
The architecture consist of a series of block levels, where each
represents a single Encoder layer. Pipelining is performed both at
the inter-block level and within each block. HG-PIPE employs a
hybrid grained pipeline approach, i.e., while some computations can
occur simultaneously, other computations are bound to start once
previous steps are complete. A diagram describing the execution
impact of different pipelining paradigms is provided in Figure 5
(inspired by [20]). The incorporated elements in addition to PE are:
General Matrix-Matrix Multiplication (GeMM); Parallel-In Parallel-
Out (PIPO), which is a type high-bandwidth parallel data register;
Auxiliary (Aux) as supporting or helper hardware modules, e.g.,
non-linear functions; and First-In First-Out (FIFO), which is used
for ordered buffering to achieve data streaming between accelerator
stages.

Overall, a large majority of articles mention the use of pipelining
in some form, either within single computation steps or on a larger
architectural scale. In total, 68% of the collected articles explicitly

Transformer Inference Deployment on FPGA: Survey

FPGA
e (][] [5] [=] [
Ceem i W B B B B B

FPGA Per|[L U

PE2 L2 L2
PE1 PE2 PES || — Reduced
- E - E - PE3 L3 L3 latency

PE1
FIFO —

FPG.
FIFO =
i)

Reduced
latency

Timeline >

Figure 5: Three pipelining paradigms and resulting effects on
the execution timeline, i.e., reduction in latency. From top to
bottom: Temporal design, i.e., no pipelining; Coarse-grained
pipelining; Fine-grained pipelining.

mention the use of pipelining. The remaining 32% do not make any
comments regarding pipelining.

8.4 Architecture designs: Instruction Set
Architectures

For this design, FlightLLM [28] and FlightVGM [33] are two acceler-
ators that make use of a custom Instruction Set Architecture (ISA)
between the host and the hardware accelerator. The ISA consists
of 6 instructions. First, the Load (LD) and Store (ST) instructions
covered, which transfer data between off-chip memory and on-chip
buffers. The Matrix-Matrix multiplication (MM) and Matrix-Vector
multiplication (MV) instructions are added for matrix multiplication
operations. The MISC instruction is included for Layer Normalisa-
tion and SoftMax calculations. Finally, the SYS instruction covers
the synchronisation between the host CPU and multiple Super
Logic Regions (SLRs), after each inference execution is completed.

9 Insights and discussion

Given what we have gathered from the pool of articles in this survey,
there are comparisons and analyses worthy of sharing. When it
comes to performance comparison, the two relatively common
metrics to rely on are: Throughput in GOPS and Energy efficiency in
GOPS/Watts.

9.1 Performance comparison: Throughput

Focusing on throughput as a performance metric, Table 7 lists the
top 10 implementations with the highest throughput in Giga Oper-
ations Per Second (GOPS), sorted from high to low. GOPS is used to
measure how many billion operations can be performed per second.
In the context of Transformer machine learning inference on FP-
GAs, GOPS gives an idea of the raw compute throughput achieved
when running inference workloads. As can be seen in Table 7, HG-
PIPE [20] has by far the highest throughput, with a throughput
more than twice as much as the second best implementation by Liu
et al. [39].

HG-PIPE also has the highest number of consumed LUTs, which
is expected as the implementation relies on LUT-based computa-
tions. Interestingly, while Table 3 indicates that implementations
utilising on-chip memory have on average a much higher through-
put, which is also a loose theoretical expectation, this does not hold.
Considering the top 10 highest throughput implementations, only
4 take advantage of on-chip storage, proving that it is still possi-
ble to achieve relatively equal performance when using off-chip
memory. However, we must note that the top contender, HG-PIPE,
is based on on-chip storage and it achieves a considerably higher
throughput compared to the 2nd best implementation.

9.2 Performance comparison: Energy efficiency

Deducing energy efficiency is less straightforward as it depends on,
simply put, the amount of work being done, which translates to
data throughput per platform at hand. When comparing implemen-
tations, it is tempting to focus only on raw performance metrics,
such as throughput and power. However, these metrics both are
highly dependent on the implemented model itself, as well as the
size of the FPGA, i.e., both are use-case and experiment specific.
Therefore, energy efficiency (GOPS/Watts), i.e., the amount of en-
ergy spent per unit of throughput, can be an additional metric to
consider for a fair comparison. Similar to our throughput metric
listing, Table 8 lists the top 10 implementations with the best energy
efficiency, sorted from high to low. This selection is limited to those
articles reporting both power usage and throughput. As it can be
seen, the top two implementations both use binarised quantization,
which allows for very fast and efficient computations. However,
switching to binarised weights is not always possible for all models.
Furthermore, a considerable number of implementations (5 articles,
half) within this top 10 batch, use RTL-level design instead of HLS,
much higher than the average use of RTL amongst all articles. Ac-
cording to Table 4, the average use of RTL is about 30%. Although,
these ratios are to be taken with a grain of salt, since a considerable
number of articles, seen in Table 4, do not specify the choice of
design level.

9.3 Effective implementations

Figure 6 plots throughput versus energy efficiency for FPGA-based
inference accelerators listed in Tables 7 and 8. Designs with both
metrics available are shown with red markers, while designs report-
ing only throughput are shown with blue markers. Note that not
every implementation provides both metrics and there is an inter-
section between the two tables. The dashed line denotes the Pareto
frontier, representing designs for which no other design achieves
both higher throughput and higher energy efficiency, simultane-
ously. The plot highlights the trade-off between raw performance
and energy efficiency and as we can see, a small number of Pareto-
optimal designs best balance these competing objectives.

As an alternative perspective, Figure 7 shows how energy effi-
ciency evolves as we move from the highest-throughput designs to
the lower-throughput ones. Here, throughput-sorted designs are
given with throughput and energy efficiency plotted on separate
axes. While throughput decreases monotonically by construction,
energy efficiency exhibits non-monotonic behaviour, indicating

A. Blankestijn et al.

Table 7: Top 10 implementations with the highest throughput in GOPS, sorted from high to low. Note that not every field is
provided in every article. Missing cells are designated with “n/a”.

Design level Storage @ FF LUT DSP BRAM Bit-width Innovation Throughput | Article
(GOPS)
HLS On-chip n/a 669K 312 1006 3 LUT based MAC 17795 [20]
RTL Off-chip 578K 472K 9024 1520 n/a Flexible floating point 8204 [39]
HLS Off-chip 162K 122K 78 691.5 1 Binary weights 3894.74 [35]
n/a Off-chip 1507K 557K 5096 1581 16 N :M sparsity 2750 [26]
n/a On-chip 139K 118K 2147 283 8 Weight loop dataflow 2330.2 [43]
HLS Off-chip n/a n/a 3482 1162 16 Attention fusion 1420 [38]
n/a On-chip 548K 274K 2520 912 1 Binary weights 1387.59 [42]
RTL Off-chip n/a 493K 5016 n/a 8,4 Sorting engine 1223.9 [37]
RTL Off-chip 114K 128K 768 n/a 5 Hybrid quantization 1023.3 [23]
n/a On-chip 1083K 544K 10812 1903 8 Redundancy aware 986.3 [44]

Table 8: Top 10 implementations with the highest power efficiency (throughput/power), sorted from high to low. Note that not
every field is provided in every article. Missing cells are designated with “n/a”.

Design level FF LUT DSP BRAM Bit-width Innovation ‘ Efficiency (GOPS/W) ‘ Article
RTL 73K 110K 0 177 1 Binary weights 679.76 (944.87 / 1.39) [40]
HLS 162K 122K 78 691.5 1 Binary weights 448.70 (3894.74 / 8.68) [35]
HLS n/a 669K 312 1006 3 LUT based MAC 381.05 (17795 / 46.7) [20]
RTL 578K 472K 9024 1520 n/a Flexible floating point 189.91 (8204 / 43.2) [39]
n/a 548K 274K 2520 912 1 Binary weights 174.54 (1387.59 / 7.95) [42]
n/a 139K 118K 2147 283 8 Weight loop dataflow 109.04 (2330.2 / 21.37) [43]
RTL n/a n/a 1024 n/a 8 Intra-/inter-layer fusions 104.98 (780 / 7.43) [25]
n/a 1507K 557K 5096 1581 16 N : M sparsity 97.41 (2750 / 28.23) [26]
RTL 114K 128K 768 n/a 5 Hybrid quantization 43.58 (1023.3/23.48) | [23]
RTL n/a n/a n/a n/a 8 n/a 39.10 (385.5 / 9.86) [34]
700 — 700
A A Throughput & energy efficiency 17500 1 —A— Throughput -
BinaryxEfficient ® Throughput only -8- Energy efficiency L 600 S
600 - : . 15000 @
o ---- Pareto frontier n a
: S 12500 | -500 S
9 500) pe
S A £ 100001 [400 E
: 400 COBRA T A _g- \ 2
- J L 1
2 HG-PIPE 7500 200 £
G 300 1 £ 50001 L 200 >
g ; B
32001 . a 25001 100 £
2 a 01 - — -
w1001 4 A “ O © L & D &L Lo
as & I TS ES S
0 ' o ' ' ' ' ' ' ' S \$é>@ S ’b&,@ (é(\b
0 2500 5000 7500 10000 12500 15000 17500 <

Figure 6: Throughput versus energy efficiency for FPGA-
based inference accelerators, designating the Pareto-optimal

Throughput (GOPS)

designs and the Pareto frontier.

that high throughput does not necessarily imply poor energy effi-
ciency. This further motivates the use of a Pareto-based analysis.

Implementations (sorted by throughput)

Figure 7: Energy efficiency trends for FPGA-based inference
accelerators, with respect to ranked throughput.

Legend. HG-PIPE [20], F3 [39], COBRA [35], FNM-Trans [26], Weight-Loop [43],
Fusion [38], BETA [42], TransFRU [37], HEAT [23], DRVIT [44], Binary-Efficient [40],
EfficientViT [25], SALTS [34].

Note that while such plots are revealing, it is hard to arrive at any
solid conclusion. As little generality can be claimed beyond applied

Transformer Inference Deployment on FPGA: Survey

methodologies for implementations targeting FPGAs, such analyses
are to be taken with a grain of salt. After all, a tremendous amount of
customisation goes into each individual implementation and these
custom techniques are not common amongst the implementations.

9.4 Standardised model benchmarking

One of the major challenges in conducting surveys on this topic is
the difficulty of making meaningful comparisons between different
accelerator implementations. The primary reason is the inconsistent
choice of Transformer models, or different variants of the same
model, to be evaluated, making fair comparisons largely infeasible.
The chosen model has a significant impact on performance, resource
utilisation, and energy efficiency of accelerator implementations.

Several models are frequently used in the literature, such as
BERT [61], Swin [62], and DeiT [63]. However, these models repre-
sent families of architectures rather than fixed specifications and
exist in numerous configurations, differing in structure and pa-
rameter counts. Consequently, reported performance figures often
reflect model complexity just as much as architectural or algorith-
mic innovation.

Using one or more standard Transformer benchmark models
would make future work easier to compare by standardising the
model structure and workload. In addition, a common benchmark-
ing approach with common sets of performance metrics, measure-
ment conditions, and reporting practices, will further reduce uncer-
tainty and improve reproducibility. It is important to ensure that
reported performance gains are primarily resulting from accelerator
design choices, rather than differences in model variants or evalua-
tion methods. While standard models and benchmarking practices
would not replace application-specific evaluations, they could serve
as a common reference point. At a minimum, consistently report-
ing the evaluated model’s size, configuration, parameter count, and
benchmarking setup, will provide valuable context and enable more
meaningful comparisons.

10 Conclusion

We have provided a comprehensive and systematic review of recent
articles on the topic of Transformer model inference deployment on
FPGA platforms. We have followed a repeatable protocol for collec-
tion and pruning of articles, which also renders the review easily
expandable by addition of new articles. The extracted taxonomy,
Figure 4, depicts a high-level, but complete hierarchy of the focus
area within the literature. The review culminates in top-10 listings
based on the two main performance metrics commonly reported,
throughout (GOPS) and power (W), from which we derive power
efficiency (GOPS/W) as a more meaningful ranking metric.

We observe that there is no absolute preference across any of
the examined categorical dimensions. Whether considering design
abstraction level (HLS vs. RTL), memory organisation (off-chip
vs. on-chip), pipelining strategies, or quantization schemes, the
choices remain rather implementation-specific and application-
driven. While this diversity highlights the inherent flexibility of
FPGA platforms, it also underscores the difficulty of drawing direct
comparisons across published works. In particular, we have touched
upon the lack of standardised benchmarking methodologies, as well

as incomplete reporting of architectural and implementation details,
as a main challenge to comparisons.

Quantization deserves special emphasis as a double-edged sword.
While reduced precision and lower bit-width arithmetic can yield
substantial gains in performance and energy efficiency, they may
also incur non-negligible degradation in model accuracy, to the
point that some ML models will no longer be viable if quantized.
Addressing this trade-off, alongside improved reporting practices
and benchmark standardisation, represents a key opportunity for
future work in FPGA-based Transformer inference.

A final and ever-present challenge lies in the trade-off between
architectural flexibility and peak performance. Highly specialised
FPGA accelerators, tailored to a specific Transformer model or con-
figuration, can achieve substantial gains in throughput and energy
efficiency, but at the cost of limited support for alternative models
or workloads. In contrast, more flexible designs that accommodate
a wider range of model variants and parameters typically incur
additional overheads, reducing raw performance. This trade-off is
inherent rather than incidental: designs optimised for maximum
performance generally sacrifice flexibility, while general-purpose
accelerators must accept lower peak efficiency. Consequently, the
appropriate balance remains application-dependent and driven by
deployment requirements.

Acknowledgments

This publication is part of the project ZORRO with project number
KICH1.ST02.21.003 of the research programme Key Enabling Tech-
nologies (KIC), which is (partly) financed by the Dutch Research
Council (NWO).

References

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. In Advances in Neural Information Processing Systems. 1. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
(Eds.)

[2] Beom Jin Kang, Hae In Lee, Seok Kyu Yoon, Young Chan Kim, Sang Beom
Jeong, Seong Jun O, and Hyun Kim. 2024. A survey of FPGA and ASIC designs
for transformer inference acceleration and optimization. Journal of Systems
Architecture. d0i:10.1016/j.sysarc.2024.103247.

[3] Krishna Teja Chitty-Venkata, Sparsh Mittal, Murali Emani, Venkatram Vish-
wanath, and Arun K. Somani. 2023. A survey of techniques for optimizing
transformer inference. Journal of Systems Architecture. doi:10.1016/j.sysarc.202
3.102990.

[4] Shaibal Saha and Lanyu Xu. 2025. Vision Transformers on the Edge: A Com-
prehensive Survey of Model Compression and Acceleration Strategies. (2025).
doi:10.48550/arXiv.2503.02891.

[5] Nikoletta Koilia and Christoforos Kachris. 2024, Hardware Acceleration of
LLMs: A comprehensive survey and comparison. (2024). doi:10.48550/arXiv.24
09.03384.

[6] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normal-
ization. (2016). doi:10.48550/arXiv.1607.06450.

[7] Ian Kuon and Jonathan Rose. 2006. Measuring the gap between FPGAs and
ASICs. In Proceedings of the 2006 ACM/SIGDA 14th International Symposium on
Field Programmable Gate Arrays. doi:10.1145/1117201.1117205.

[8] Stylianos I. Venieris, Alexandros Kouris, and Christos-Savvas Bouganis. 2018.
Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey
and Future Directions. ACM Comput. Surv. doi:10.1145/3186332.

[91 AMD Xilinx. 2025. UltraScale Architecture and Product Data Sheet: Overview
(DS890). AMD Xilinx. https://docs.amd.com/v/u/en-US/ds890-ultrascale-overv
iew.

[10] Intel. 2024. Stratix® 10 GX/SX Device Overview. Intel. https://cdrdv2.intel.com
/v1/dl/getContent/670537?fileName=s10-overview-683729-670537.pdf.

https://doi.org/10.1016/j.sysarc.2024.103247
https://doi.org/10.1016/j.sysarc.2023.102990
https://doi.org/10.1016/j.sysarc.2023.102990
https://doi.org/10.48550/arXiv.2503.02891
https://doi.org/10.48550/arXiv.2409.03384
https://doi.org/10.48550/arXiv.2409.03384
https://doi.org/10.48550/arXiv.1607.06450
https://doi.org/10.1145/1117201.1117205
https://doi.org/10.1145/3186332
https://docs.amd.com/v/u/en-US/ds890-ultrascale-overview
https://docs.amd.com/v/u/en-US/ds890-ultrascale-overview
https://cdrdv2.intel.com/v1/dl/getContent/670537?fileName=s10-overview-683729-670537.pdf
https://cdrdv2.intel.com/v1/dl/getContent/670537?fileName=s10-overview-683729-670537.pdf

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.
2015. Optimizing FPGA-based Accelerator Design for Deep Convolutional Neu-
ral Networks. In Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. doi:10.1145/2684746.2689060.

Andrew Boutros, Aman Arora, and Vaughn Betz. 2025. Field-Programmable
Gate Array Architecture for Deep Learning: Survey and Future Directions.
Proceedings of the IEEE. doi:10.1109/JPROC.2025.3623023.

Yongming Shen, Michael Ferdman, and Peter Milder. 2017. Maximizing CNN
Accelerator Efficiency Through Resource Partitioning. In Proceedings of the
44th Annual International Symposium on Computer Architecture. doi:10.1145/30
79856.3080221.

Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Jason H. Anderson, Stephen Brown, and Tomasz Czajkowski. 2011. LegUp: high-
level synthesis for FPGA-based processor/accelerator systems. In Proceedings
of the 19th ACM/SIGDA International Symposium on Field Programmable Gate
Arrays. doi:10.1145/1950413.1950423.

Razvan Nane et al. 2016. A Survey and Evaluation of FPGA High-Level Synthe-
sis Tools. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems. doi:10.1109/TCAD.2015.2513673.

Christoforos Kachris. 2025. A Survey on Hardware Accelerators for Large
Language Models. Applied Sciences. doi:10.3390/app15020586.

Ehsan Kabir, Jason D. Bakos, David Andrews, and Miaoqing Huang. 2024. A
Runtime-Adaptive Transformer Neural Network Accelerator on FPGAs. (2024).
doi:10.48550/arxiv.2411.18148.

Ehsan Kabir, Md. Arafat Kabir, Austin R. J. Downey, Jason D. Bakos, David
Andrews, and Miaoging Huang. 2024. FAMOUS: Flexible Accelerator for the
Attention Mechanism of Transformer on UltraScale+ FPGAs. (2024). doi:10.485
50/arXiv.2409.14023.

Richie Li and Sicheng Chen. 2025. Design and Implementation of an FPGA-
Based Hardware Accelerator for Transformer. (2025). doi:10.48550/arXiv.2503
16731,

Qingyu Guo, Jiayong Wan, Songgiang Xu, Meng Li, and Yuan Wang. 2024. HG-
PIPE: Vision Transformer Acceleration with Hybrid-Grained Pipeline. (2024).
doi:10.48550/arXiv.2407.17879.

Kyle Marino, Pengmiao Zhang, and Viktor Prasanna. 2024. Me-vit: a single-load
memory-efficient fpga accelerator for vision transformers. (2024). doi:10.48550
/arXiv.2402.09709.

Ehsan Kabir, Jason D. Bakos, David Andrews, and Miaoqing Huang. 2024.
ProTEA: Programmable Transformer Encoder Acceleration on FPGA. In SC24-
W: Workshops of the International Conference for High Performance Computing,
Networking, Storage and Analysis. doi:10.1109/SCW63240.2024.00074.

Pan Zhao, Donghui Xue, Licheng Wu, Liang Chang, Haining Tan, Yinhe Han,
and Jun Zhou. 2025. HEAT: Efficient Vision Transformer Accelerator With
Hybrid-Precision Quantization. IEEE Transactions on Circuits and Systems II:
Express Briefs. doi:10.1109/TCSII.2025.3547340.

Linfeng Zhong, Qingyu Guo, Runsheng Wang, Yuan Wang, and Meng Li. 2024.
Flexible Yet Efficient Transformer Acceleration with Unified Sparse Attention
Support on FPGA. In 2024 IEEE 17th International Conference on Solid-State &
Integrated Circuit Technology (ICSICT). doi:10.1109/ICSICT62049.2024.10831534.
Haikuo Shao, Huihong Shi, Wendong Mao, and Zhongfeng Wang. 2024. An
FPGA-Based Reconfigurable Accelerator for Convolution-Transformer Hybrid
EfficientViT. In 2024 IEEE International Symposium on Circuits and Systems
(ISCAS). doi:10.1109/ISCAS58744.2024.10557992.

Manting Zhang, Jialin Cao, Kejia Shi, Keqing Zhao, Genhao Zhang, Jun Yu, and
Kun Wang. 2024. FNM-Trans: Efficient FPGA-based Transformer Architecture
with Full N:M Sparsity. In Proceedings of the 61st ACM/IEEE Design Automation
Conference. doi:10.1145/3649329.3656497.

Zhiyang Liu, Pengyu Yin, and Zhenhua Ren. 2023. An Efficient FPGA-Based
Accelerator for Swin Transformer. (2023). doi:10.48550/arXiv.2308.13922.
Shulin Zeng et al. 2024. FlightLLM: Efficient Large Language Model Infer-
ence with a Complete Mapping Flow on FPGAs. In Proceedings of the 2024
ACM/SIGDA International Symposium on Field Programmable Gate Arrays. doi:1
0.1145/3626202.3637562.

Zhenyu Bai, Pranav Dangi, Huize Li, and Tulika Mitra. 2024. SWAT: Scalable
and Efficient Window Attention-based Transformers Acceleration on FPGAs.
(2024). doi:10.48550/arXiv.2405.17025.

Andy He, Darren Key, Mason Bulling, Andrew Chang, Skyler Shapiro, and
Everett Lee. 2024. HLSTransform: Energy-Efficient Llama 2 Inference on FPGAs
Via High Level Synthesis. (2024). doi:10.48550/arXiv.2405.00738.

Jie Li, Dingjiang Yan, Fangzhou He, Zhicheng Dong, and Mingfei Jiang. 2024.
A Mixed-Precision Transformer Accelerator With Vector Tiling Systolic Array
for License Plate Recognition in Unconstrained Scenarios. IEEE Transactions
on Intelligent Transportation Systems. doi:10.1109/TITS.2024.3457815.

Jiale Dong, Wengqi Lou, Zhendong Zheng, Yunji Qin, Lei Gong, Chao Wang,
and Xuehai Zhou. 2025. UbiMoE: A Ubiquitous Mixture-of-Experts Vision
Transformer Accelerator With Hybrid Computation Pattern on FPGA. In 2025

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[46]

(47]

(48]

[49]

[50]

(51]

[52]

A. Blankestijn et al.

IEEE International Symposium on Circuits and Systems (ISCAS). doi:10.1109
/ISCAS56072.2025.11043956.

Jun Liu et al. 2025. FlightVGM: Efficient Video Generation Model Inference
with Online Sparsification and Hybrid Precision on FPGAs. In Proceedings of
the 2025 ACM/SIGDA International Symposium on Field Programmable Gate
Arrays. doi:10.1145/3706628.3708864.

Kaiqi Chen, Xinhua Shi, and Jun Han. 2024. SALTS: An Efficient and Flexible
Self-Attention Accelerator with Long Token Support on FPGA. In 2024 IEEE
17th International Conference on Solid-State & Integrated Circuit Technology
(ICSICT). doi:10.1109/ICSICT62049.2024.10831003.

Ye Qiao, Zhiheng Chen, Yian Wang, Yifan Zhang, Yunzhe Deng, and Sitao
Huang. 2025. COBRA: Algorithm-Architecture Co-optimized Binary Trans-
former Accelerator for Edge Inference. (2025). doi:10.48550/arXiv.2504.16269.
Peiyan Dong et al. 2024. EQ-VIiT: Algorithm-Hardware Co-Design for End-to-
End Acceleration of Real-Time Vision Transformer Inference on Versal ACAP
Architecture. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems. d0i:10.1109/TCAD.2024.3443692.

Hongji Wang, Yueyin Bai, Jun Yu, and Kun Wang. 2024. TransFRU: Efficient
Deployment of Transformers on FPGA with Full Resource Utilization. In 2024
29th Asia and South Pacific Design Automation Conference (ASP-DAC). doi:10.11
09/ASP-DAC58780.2024.10473976.

Yunji Qin, Wengi Lou, Chao Wang, Lei Gong, and Xuehai Zhou. 2024. Enhanc-
ing Long Sequence Input Processing in FPGA-Based Transformer Accelerators
through Attention Fusion. In Proceedings of the Great Lakes Symposium on VLSI
2024. doi:10.1145/3649476.3658810.

Zerong He, Xi Jin, and Zhongguang Xu. 2025. F3: An FPGA-Based Transformer
Fine-Tuning Accelerator With Flexible Floating Point Format. IEEE Journal on
Emerging and Selected Topics in Circuits and Systems. doi:10.1109/JETCAS.2025
.3555970.

Congpeng Du, Seok-Bum Ko, and Hao Zhang. 2024. Energy Efficient FPGA-
Based Binary Transformer Accelerator for Edge Devices. In 2024 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS). d0i:10.1109/ISCAS58744.202
4.10558631.

Woohong Byun, Jongseok Woo, and Saibal Mukhopadhyay. 2024. Hardware-
friendly Hessian-driven Row-wise Quantization and FPGA Acceleration for
Transformer-based Models. In Proceedings of the 29th ACM/IEEE International
Symposium on Low Power Electronics and Design. doi:10.1145/3665314.3670806.
Yuhao Ji, Chao Fang, and Zhongfeng Wang. 2024. BETA: Binarized Energy-
Efficient Transformer Accelerator at the Edge. In 2024 IEEE International Sympo-
sium on Circuits and Systems (ISCAS). d0i:10.1109/ISCAS58744.2024.10558636.
Yueqi Zhang, Lichen Feng, Hongwei Shan, and Zhangming Zhu. 2024. A 109-
GOPs/W FPGA-Based Vision Transformer Accelerator With Weight-Loop
Dataflow Featuring Data Reusing and Resource Saving. IEEE Transactions on
Circuits and Systems for Video Technology. doi:10.1109/TCSVT.2024.3439600.
Xiangfeng Sun, Yuanting Zhang, Qinyu Wang, Xiaofeng Zou, Yujia Liu, Zigian
Zeng, and Huiping Zhuang. 2025. DRViT: A dynamic redundancy-aware vision
transformer accelerator via algorithm and architecture co-design on FPGA.
Journal of Parallel and Distributed Computing. doi:10.1016/j.jpdc.2025.105042.
Saiqun Wang and Hao Zhang. 2024. Efficient FPGA-Based Transformer Accel-
erator Using In-Block Balanced Pruning. In 2024 13th International Conference
on Communications, Circuits and Systems (ICCCAS). doi:10.1109/ICCCAS62034
.2024.10651591.

Zuohao Li, Yiwan Lai, and Hao Zhang. 2024. Energy Efficient FPGA-Based
Accelerator for Dynamic Sparse Transformer. In 2024 13th International Confer-
ence on Communications, Circuits and Systems (ICCCAS). doi:10.1109/ICCCAS6
2034.2024.10652850.

Bingyi Zhang, Rajgopal Kannan, Carl Busart, and Viktor K. Prasanna. 2024.
VisionAGILE: A Versatile Domain-Specific Accelerator for Computer Vision
Tasks. IEEE Transactions on Parallel and Distributed Systems. doi:10.1109/TPDS.2
024.3466891.

Tianheng Ling, Chao Qian, and Gregor Schiele. 2024. Integer-only Quantized
Transformers for Embedded FPGA-based Time-series Forecasting in AloT. In
2024 IEEE Annual Congress on Artificial Intelligence of Things (AloT). doi:10.110
9/AI0T63253.2024.00017.

Zhixing Jiang et al. 2024. Low Latency Transformer Inference on FPGAs for
Physics Applications with hls4ml. (2024). doi:10.48550/arXiv.2409.05207.
Mohammad Erfan Sadeghi, Arash Fayyazi, Suhas Somashekar, Armin Abdollahi,
and Massoud Pedram. 2024. CHOSEN: Compilation to Hardware Optimization
Stack for Efficient Vision Transformer Inference. (2024). doi:10.48550/arXiv.24
07.12736.

Maoyang Xiang, Ramesh Fernando, and Bo Wang. 2025. On-Device Qwen2.5:
Efficient LLM Inference with Model Compression and Hardware Acceleration.
(2025). doi:10.48550/arXiv.2504.17376.

Qiwei Dong, Xiaoru Xie, and Zhongfeng Wang. 2024. SWAT: An Efficient Swin
Transformer Accelerator Based on FPGA. In 2024 29th Asia and South Pacific
Design Automation Conference (ASP-DAC). doi:10.1109/ASP-DAC58780.2024.10
473931.

https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1109/JPROC.2025.3623023
https://doi.org/10.1145/3079856.3080221
https://doi.org/10.1145/3079856.3080221
https://doi.org/10.1145/1950413.1950423
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.3390/app15020586
https://doi.org/10.48550/arxiv.2411.18148
https://doi.org/10.48550/arXiv.2409.14023
https://doi.org/10.48550/arXiv.2409.14023
https://doi.org/10.48550/arXiv.2503.16731
https://doi.org/10.48550/arXiv.2503.16731
https://doi.org/10.48550/arXiv.2407.17879
https://doi.org/10.48550/arXiv.2402.09709
https://doi.org/10.48550/arXiv.2402.09709
https://doi.org/10.1109/SCW63240.2024.00074
https://doi.org/10.1109/TCSII.2025.3547340
https://doi.org/10.1109/ICSICT62049.2024.10831534
https://doi.org/10.1109/ISCAS58744.2024.10557992
https://doi.org/10.1145/3649329.3656497
https://doi.org/10.48550/arXiv.2308.13922
https://doi.org/10.1145/3626202.3637562
https://doi.org/10.1145/3626202.3637562
https://doi.org/10.48550/arXiv.2405.17025
https://doi.org/10.48550/arXiv.2405.00738
https://doi.org/10.1109/TITS.2024.3457815
https://doi.org/10.1109/ISCAS56072.2025.11043956
https://doi.org/10.1109/ISCAS56072.2025.11043956
https://doi.org/10.1145/3706628.3708864
https://doi.org/10.1109/ICSICT62049.2024.10831003
https://doi.org/10.48550/arXiv.2504.16269
https://doi.org/10.1109/TCAD.2024.3443692
https://doi.org/10.1109/ASP-DAC58780.2024.10473976
https://doi.org/10.1109/ASP-DAC58780.2024.10473976
https://doi.org/10.1145/3649476.3658810
https://doi.org/10.1109/JETCAS.2025.3555970
https://doi.org/10.1109/JETCAS.2025.3555970
https://doi.org/10.1109/ISCAS58744.2024.10558631
https://doi.org/10.1109/ISCAS58744.2024.10558631
https://doi.org/10.1145/3665314.3670806
https://doi.org/10.1109/ISCAS58744.2024.10558636
https://doi.org/10.1109/TCSVT.2024.3439600
https://doi.org/10.1016/j.jpdc.2025.105042
https://doi.org/10.1109/ICCCAS62034.2024.10651591
https://doi.org/10.1109/ICCCAS62034.2024.10651591
https://doi.org/10.1109/ICCCAS62034.2024.10652850
https://doi.org/10.1109/ICCCAS62034.2024.10652850
https://doi.org/10.1109/TPDS.2024.3466891
https://doi.org/10.1109/TPDS.2024.3466891
https://doi.org/10.1109/AIoT63253.2024.00017
https://doi.org/10.1109/AIoT63253.2024.00017
https://doi.org/10.48550/arXiv.2409.05207
https://doi.org/10.48550/arXiv.2407.12736
https://doi.org/10.48550/arXiv.2407.12736
https://doi.org/10.48550/arXiv.2504.17376
https://doi.org/10.1109/ASP-DAC58780.2024.10473931
https://doi.org/10.1109/ASP-DAC58780.2024.10473931

Transformer Inference Deployment on FPGA: Survey

[53]

[54]

[55]

Minseok Seo et al. 2024. IANUS: Integrated Accelerator Based on NPU-PIM
Unified Memory System. In Proceedings of the 29th ACM International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, Volume 3. doi:10.1145/3620666.3651324.

Cheng Xu, Yirong Kan, Renyuan Zhang, and Yasuhiko Nakashima. 2024. An
FPGA-Oriented Quantization Approach for Vision Transformer with LUT-
Friendly Operations. In 2024 Twelfth International Symposium on Computing
and Networking (CANDAR). doi:10.1109/CANDAR64496.2024.00042.
Abhishek Moitra, Abhiroop Bhattacharjee, and Priyadarshini Panda. 2024.
PIVOT: Input-Aware Path Selection for Energy-Efficient ViT Inference. In
Proceedings of the 61st ACM/IEEE Design Automation Conference. doi:10.1145/3
649329.3655679.

J.Duarte et al. 2018. Fast inference of deep neural networks in FPGAs for particle
physics. Journal of Instrumentation. doi:10.1088/1748-0221/13/07/P07027.
FastML Team. 2025. hls4ml. (2025). doi:10.5281/zenodo.17517206.

Anouar Nechi, Lukas Groth, Saleh Mulhem, Farhad Merchant, Rainer Buchty,
and Mladen Berekovic. 2023. FPGA-based Deep Learning Inference Accel-
erators: Where Are We Standing? ACM Trans. Reconfigurable Technol. Syst.
doi:10.1145/3613963.

[59]

[60]

[61]

[62]

(3]

Yuntao Han and Qiang Liu. 2023. HPTA: A High Performance Transformer
Accelerator Based on FPGA. In 2023 33rd International Conference on Field-
Programmable Logic and Applications (FPL). doi:10.1109/FPL60245.2023.00012.
Zhen Dong, Zhewei Yao, Amir Gholami, Michael Mahoney, and Kurt Keutzer.
2019. HAWQ: Hessian AWare Quantization of Neural Networks With Mixed-
Precision. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV).
d0i:10.1109/ICCV.2019.00038.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers). Jill Burstein, Christy Doran, and Thamar
Solorio, (Eds.) doi:10.18653/v1/N19-1423.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. 2021. Swin Transformer: Hierarchical Vision Transformer
using Shifted Windows. In 2021 IEEE/CVF International Conference on Computer
Vision (ICCV). doi:10.1109/ICCV48922.2021.00986.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Hervé Jégou. 2021. Training Data-Efficient Image Transform-
ers & Distillation Through Attention. In Proceedings of the 38th International
Conference on Machine Learning. Marina Meila and Tong Zhang, (Eds.)

https://doi.org/10.1145/3620666.3651324
https://doi.org/10.1109/CANDAR64496.2024.00042
https://doi.org/10.1145/3649329.3655679
https://doi.org/10.1145/3649329.3655679
https://doi.org/10.1088/1748-0221/13/07/P07027
https://doi.org/10.5281/zenodo.17517206
https://doi.org/10.1145/3613963
https://doi.org/10.1109/FPL60245.2023.00012
https://doi.org/10.1109/ICCV.2019.00038
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/ICCV48922.2021.00986

	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Transformer architecture
	2.2 FPGA technology

	3 Survey method & pruning protocols
	4 Taxonomy of Transformer inference on FPGAs
	5 Model weights storage
	5.1 Off-chip storage
	5.2 On-chip storage
	5.3 Performance comparison

	6 Incorporated tooling
	6.1 Frameworks
	6.2 HLS vs RTL

	7 Model compression
	7.1 Quantization
	7.2 Model pruning

	8 IP design optimisations
	8.1 Computation: SoftMax and non-linear functions
	8.2 Architecture designs: PE design
	8.3 Architecture designs: Pipelining
	8.4 Architecture designs: Instruction Set Architectures

	9 Insights and discussion
	9.1 Performance comparison: Throughput
	9.2 Performance comparison: Energy efficiency
	9.3 Effective implementations
	9.4 Standardised model benchmarking

	10 Conclusion
	Acknowledgments

