TrackCore-F: Deploying Transformer-Based Subatomic Particle
Tracking on FPGAs

Arjan Blankestijn'®, Uraz Odyurt?*® and Amirreza Yousefzadeh!

1 Computer Architecture for Embedded Systems, University of Twente, Enschede, The
Netherlands
2 Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands

* u.odyurt@utwente.nl

’ The 2nd European Al for Fundamental
° E u c AI F Physics Conference (EuCAIFCon2025)

Cagliari, Sardinia, 16-20 June 2025

Abstract

The Transformer Machine Learning (ML) architecture has been gaining considerable
momentum in recent years. In particular, computational High-Energy Physics tasks
such as jet tagging and particle track reconstruction (tracking), have either achieved
proper solutions, or reached considerable milestones using Transformers. On the other
hand, the use of specialised hardware accelerators, especially FPGAs, is an effective
method to achieve online, or pseudo-online latencies. The development and integra-
tion of Transformer-based ML to FPGAs is still ongoing and the support from current
tools is very limited to non-existent. Additionally, FPGA resources present a significant
constraint. Considering the model size alone, while smaller models can be deployed di-
rectly, larger models are to be partitioned in a meaningful and ideally, automated way.
We aim to develop methodologies and tools for monolithic, or partitioned Transformer
synthesis, specifically targeting inference. Our primary use-case involves two machine
learning model designs for tracking, derived from the TrackFormers project. We elabo-
rate our development approach, present preliminary results, and provide comparisons.

1 Introduction

The move to ML-assisted tracking solutions is deemed necessary and inevitable. While design
efforts are moving forward, another important aspect to consider is deployment. The accurate
tracking has been a post-mortem task, which is due to the computation requirements. While
the introduction of ML algorithms will improve computational performance, the increase in
scale and frequency of experiments will somewhat counter and reduce effects of such improve-
ments. This is especially the case for the scales expected from the upcoming High-Luminosity
stage of the LHC (HL-LHC). On top of that, efficient execution of ML algorithms has predom-
inantly been tied to GPUs as the platform of choice. While not a universal dependency, GPUs
dominate the ML deployment scene. Having said that, there are viable alternative forms of
hardware acceleration, e.g., FPGA, custom ASIC, and Neuromorphic. We aim to deploy ML-
assisted track reconstruction on FPGAs to achieve better or equivalent latencies. FPGAs enable
on-site deployment of tracking and entail considerable energy efficiency potential.

https://orcid.org/0009-0005-4628-7689
https://orcid.org/0000-0003-1094-0234
https://orcid.org/0000-0002-2967-5090
mailto:u.odyurt@utwente.nl

Related work Deployment of models based on the Transformer architecture on hardware,
especially FPGAs, has been a point of interest for the research community. This is especially
noticeable during the past and the current year, 2024-2025. Focusing on the optimisations, 4
main trends are observable, namely: approaches focusing on quantization techniques [1-3],
approaches utilising off-chip memory [4], approaches levering sparsity trough pruning [5-7],
and approaches based on optimisation of non-linear functions such as SoftMax [8].

One of the important metrics to consider when evaluating implementations is through-
put. At the time of this writing, the most promising approaches demonstrating the highest
throughput are [1] and [9], with the former achieving noticeably higher throughput.

2 Background

At the Large Hadron Collider (LHC), particles are accelerated in opposite directions in a circular
accelerator and made to collide at four interaction points, where large-scale detectors are
positioned. These major detectors are ALICE [10], ATLAS [11], CMS [12], and LHCb [13].
Detectors perform two key functions: tracking and calorimetry, allowing the calculation of
their momentum, p and measuring the energy, E, deposited by particles, respectively. Together,
these measurements enable the calculation of a particle’s mass, m, using the relativistic energy-
momentum relation: E2 = (mc?)?+(pc)?, where c is the speed of light. Accurately determining
particle mass is essential for identifying known particles and discovering new ones.

2.1 Tracking algorithms

There has been continuous efforts channelled into the design and development of ML-based, or
rather ML-assisted, tracking solutions. Two ML model architectures stand out: Graph Neural
Networks (GNNs) and more recently, Transformers [14]. Within the scope of this paper, we
focus on two Transformer designs from the project TrackFormers [15], EncCla and EncReg.
Both models operate as so-called single-shot models, i.e., they take in a full event’s data and
perform hit to track association for the whole event.

The Encoder-Classifier (EncCla) is an encoder-only Transformer design. This approach
takes in the coordinates from an event and predicts their association to pre-defined class labels.
Class labels, ensured to be unique, are generated through binning of the track parameter space.
The largest variant has close to 1.5 million parameters with estimated memory consumptions
of 5.69 MB and 0.07 MB for parameters and activations, respectively.

The Encoder-Regressor (EncReg) is also an encoder-only Transformer design. It does not
rely on class labels, but regression of potential tracks’ parameters for a single event. As a post-
processing step, a clustering algorithm has to be applied to model’s output. As such, predicted
track parameters per hit are clustered, forming track associations. EncReg uses HDBSCAN to
achieve this clustering. The model has close to 76 484 parameters with estimated memory
consumptions of 0.29 MB and 0.07 MB for parameters and activations, respectively.

2.2 Datasets

The two model designs have been trained with 5 different datasets, forming a progression
of simple to complex representations of tracks and hits, i.e., track function complexity, track
count, and by extension, hit count: 10-50 (variable count) linear tracks per event (REDVID),
10-50 (variable count) helical tracks per event (REDVID), 50-100 (variable count) helical
tracks per event (REDVID), 10-50 (variable count) tracks per event (TrackML), 200-500 (vari-
able count) tracks per event (TrackML). The first three datasets are the result of simulations

using REDVID simulation framework [16]. The last two datasets on are scale-reduced versions
of the data associated with the TrackML Kaggle challenge [17].

3 Implementation and results

The utilised test bench is an ARM Zynq UltraScale+ MPSoC ZCU102 evaluation kit. The on-
board EG device (ZU9EG) consists of a Quad-Core ARM Cortex-A53 Processing Unit (PU) and
a Programmable Logic (PL) with the following specification [18]: System Logic Cells 599 550,
Configurable Logic Block (CLB) Flip-Flops 548 160, CLB LUTs 274 080, Distributed RAM (Mb)
8.8, Block RAM (Mb) 32.1, DSP Slices 2 520.

A variety of tooling has to be used in a progression to achieve a deployable synthesised
kernel. In particular, for pre-trained ML models, we have taken advantage of the following:

* PyTorch: Our models are provided in the PyTorch format, which could optionally be
used for quantization.

* ONNX: Open Neural Network Exchange (ONNX) is an open-source format for repre-
senting ML models, which reveals low-level operations, input/output dimensions, data
types, and weight Tensor values (if present) per operation. We have used the ONNX
format for quantization as well.

* AMD Vitis HLS 2022.2: Vitis High-Level Synthesis (HLS) is a tool from AMD (previously
Xilinx), enabling C/C++, or OpenCL descriptions of hardware to be synthesised into
Register Transfer Level (RTL) implementations targeting FPGAs.

* AMD Vivado 2022.2: Vivado Design Suite is used to integrate and configure the IP de-
signed using Vitis HLS with the Zynq MPSoC and synthesise the final bitstream.

* PYNQ: Python Productivity for Zynq (PYNQ) is a Python-based development environ-
ment designed for AMD’s Zynq SoCs. PYNQ enables interaction with the Zynq PL.

3.1 Development flow

As depicted in Figure 1, our deployment workflow is comprised of different steps involving the
aforementioned tooling.

First, a pre-trained PyTorch model is converted to the ONNX format. The selected model is
trained on the first dataset from Section 2.2. Working with an ONNX model requires the model
itself, plus the input data shape. Considering the model graph of low-level computational
operations (through ONNX format), one can opt for a full or a partial model deployment. A
full deployment is conditional to model size and PL resource availability.

Currently, we apply a manual partitioning, which results in a split model, including the
slice to be synthesised as a kernel. The output from the preceding layer is passed on to the
slice kernel. In return, the output from the kernel is being fed to the following layer, fusing the
dataflow between model partitions. Vitis HLS is used to develop the kernel in C/C++4. Once
functionality is verified with behavioural simulation, the kernel is synthesised into a hardware
IP The resulting IP is imported into Vivado where it is integrated with the MPSoC block and
connected with peripherals such as the AXI4 communication bus. Finally, using Vivado, the
complete design is synthesised and a bitstream generated. Note that our current workflow
relies on the Vivado IP Flow to integrate our designed IP into the rest of the peripherals using
Vivado. Optionally, the (more restrictive) alternative Vitis Kernel Flow can be used to directly
synthesise the final output.

Split model

= _ 3
== d %
€ ONNX =
A ONNX model Model graph _§ C"rs”t';‘;‘(:)“"“ = %
/ \ / X’I' ------ ‘(\ / * Fuse dataflow lf

Model Model | Manual slice | .

Sl r—- e —>: selection :—» Model splitter Kernel Kernel
.)
\ ,,

input

output

.. %
. /
‘_.I__a

y

Coding for FPGA (HLS) Synthesise kernel Deploy

PYNG
==
Computation Synthesise
kernel kernel

Figure 1: The development flow describing the handling of pre-trained ML models
and preparations for selective slice deployment on a FPGA.

Focusing on a single encoder layer, the model is split into three parts: the segment before
the first encoder layer, the encoder layer to be implemented and deployed on the FPGA, and
the remaining model segment. The encoder kernel block is developed using HLS C/C++ in
Vitis. The top-level function takes all the weights of the encoder layer as input. These weights
are transferred to the kernel using a AXI4-Lite interface. Once all the parameters are loaded in,
the computations for the encoder layer take place. This consists of the Multi-Head Attention
(MHA), followed by the first Add AND Normalisation, a feed-forward layer, and finally a
last Add AND Normalisation layer. HLS Pragmas are used to optimise performance.

When designing a kernel for the PL, we are not required to implement ONNX operation
blocks individually. In fact, it often reduces CLB and memory utilisation if a selected segment
can be developed into a monolithic kernel. To make the transition and porting smooth, we first
develop the ONNX model slice using low-level Python code, i.e., NumPy and basic arithmetic.

3.2 Quantization effects

The current implementation makes use of floating-point weights and activations. A common
way to increase performance and reduce resource consumption is to employ quantization,
often at INT8, for both weights and activations. However, this can greatly affect the overall
accuracy of the model. ONNX Static quantization available in the ONNX Python package was
used to investigate the effect on the accuracy. Table 1 shows the resulting model accuracies at
different quantization configurations. We can conclude that quantizing the activations has a
bigger impact on the model accuracy, while quantizing just the weights has a lesser impact.

Table 1: Model prediction accuracies with different quantization levels applied. The
base model has an overall prediction accuracy of 0.97.

Model activations Model weights Prediction accuracy

INT16 INT16 0.90
INT16 INT8 0.90
INT8 INT16 0.71
INT8 INT8 0.70

There are more combinations to try for a comprehensive benchmarking, e.g., not quantiz-
ing the activations and only using quantized INT8 weights. ONNX Static quantization does
not support this configuration and implementation is more complicated.

3.3 Resource consumption

The FPGA has a limited amount of available hardware resources, in particular, Block RAMs
(BRAMS), Digital Signal Processing slices (DSPs), Flip-Flops (FFs), and Look-Up Tables (LUTSs).
Table 2 lists the resource consumption of a single encoder layer kernel compared to the avail-
able resources on the ZCU102.

Table 2: ZCU102 FPGA resource utilisation for a single encoder layer.

Resource type Used Total available Utilisation (%)

BRAM 694 912 76.1
DSP 67 2520 2.66
FF 74184 548160 13.5
LUT 65815 274080 24.01

As it can be seen, the limiting factor is the available BRAM, which has a utilisation of
76.1%. However, the number of used BRAMs can be reduced effectively by considering more
DDR memory at the expense of increased memory transfer and latency. Thus, given that the
BRAM utilisation can be reduced, the second limiting factor will be the number of LUTs, which
are at 24.01% utilisation for a single encoder layer. This suggest that a maximum of 4 encoder
layers can be implemented on this particular FPGA and for this model.

4 Conclusion

We provided a structured development flow for deployment of pre-trained tracking models on
FPGAs. A partial deployment is as feasible as a full deployment. While not as performant,
we see a partial deployment as valuable as a full one, since it enables the deployment of
model inference on more accessible hardware. We notice that application of optimisations
could be more important than the HLS implementation itself. We have seen how detrimental
quantization can be for the model’s prediction accuracy. Optimisations and their effects are
highly dependent on the model itself and the HLS implementations.

Acknowledgements

This publication is part of the project ZORRO with project number KICH1.ST02.21.003 of the
research programme Key Enabling Technologies (KIC), which is (partly) financed by the Dutch
Research Council (NWO).

References

[1] Q. Guo, J. Wan, S. Xu, M. Li and Y. Wang, HG-PIPE: Vision Transformer Acceleration with
Hybrid-Grained Pipeline, In Proceedings of the 43rd IEEE/ACM International Conference
on Computer-Aided Design, doi:10.1145/3676536.3676681 (2025).

https://doi.org/10.1145/3676536.3676681

[2] P Zhao, D. Xue, L. Wu, L. Chang, H. Tan, Y. Han and J. Zhou, HEAT: Efficient Vision Trans-
former Accelerator With Hybrid-Precision Quantization, IEEE Transactions on Circuits and
Systems II: Express Briefs (2025), doi:10.1109/TCSII.2025.3547340.

[3] C.Du, S.-B. Ko and H. Zhang, Energy Efficient FPGA-Based Binary Transformer Accelerator
for Edge Devices, In 2024 IEEE International Symposium on Circuits and Systems (ISCAS),
doi:10.1109/1SCAS58744.2024.10558631 (2024).

[4] E. Kabir, J. D. Bakos, D. Andrews and M. Huang, A Runtime-Adaptive Transformer Neural
Network Accelerator on FPGAs, doi:10.48550/arXiv.2411.18148 (2025).

[5] M. Zhang, J. Cao, K. Shi, K. Zhao, G. Zhang, J. Yu and K. Wang, FNM-Trans: Efficient
FPGA-based Transformer Architecture with Full N:M Sparsity, In Proceedings of the 61st
ACM/IEEE Design Automation Conference, doi:10.1145/3649329.3656497 (2024).

[6] S. Wang and H. Zhang, Efficient FPGA-Based Transformer Accelerator Using In-Block Bal-
anced Pruning, In 2024 13th International Conference on Communications, Circuits and
Systems (ICCCAS), doi:10.1109/ICCCAS62034.2024.10651591 (2024).

[7] Z.1i, Y. Lai and H. Zhang, Energy Efficient FPGA-Based Accelerator for Dynamic Sparse
Transformer, In 2024 13th International Conference on Communications, Circuits and
Systems (ICCCAS), doi:10.1109/ICCCAS62034.2024.10652850 (2024).

[8] Z. Bai, P Dangi, H. Li and T. Mitra, SWAT: Scalable and Efficient Window Attention-
based Transformers Acceleration on FPGAs, In Proceedings of the 61st ACM/IEEE Design
Automation Conference, doi:10.1145/3649329.3658488 (2024).

[9] Z. He, X. Jin and Z. Xu, F3: An FPGA-Based Transformer Fine-Tuning Accelerator With
Flexible Floating Point Format, IEEE Journal on Emerging and Selected Topics in Circuits
and Systems (2025), doi:10.1109/JETCAS.2025.3555970.

[10] T. A. Collaboration, The ALICE experiment at the CERN LHC, Journal of Instrumentation
(2008), do0i:10.1088/1748-0221/3/08/S08002.

[11] T. A. Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, Journal
of Instrumentation (2008), doi:10.1088/1748-0221/3/08/S08003.

[12] T. C. Collaboration, The CMS experiment at the CERN LHC, Journal of Instrumentation
(2008), doi:10.1088/1748-0221/3/08/S08004.

[13] T. L. Collaboration, The LHCb Detector at the LHC, Journal of Instrumentation (2008),
doi:10.1088/1748-0221/3/08/S08005.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser and
I. Polosukhin, Attention is All You Need, In Proceedings of the 31st International Conference
on Neural Information Processing Systems (2017).

[15] S. Caron, N. Dobreva, A. Ferrer Sanchez, J. D. Martin-Guerrero, U. Odyurt, R. Ruiz de
Austri Bazan, Z. Wolffs and Y. Zhao, TrackFormers: In Search of Transformer-Based Particle
Tracking for the High-Luminosity LHC Era, The European Physical Journal C (2025),
doi:10.1140/epjc/s10052-025-14156-3.

[16] U. Odyurt, S. N. Swatman, A.-L. Varbanescu and S. Caron, Reduced Simulations for High-
Energy Physics, a Middle Ground for Data-Driven Physics Research, In Computational Sci-
ence — ICCS 2024, doi:10.1007/978-3-031-63751-3_6 (2024).

https://doi.org/10.1109/TCSII.2025.3547340
https://doi.org/10.1109/ISCAS58744.2024.10558631
https://doi.org/10.48550/arXiv.2411.18148
https://doi.org/10.1145/3649329.3656497
https://doi.org/10.1109/ICCCAS62034.2024.10651591
https://doi.org/10.1109/ICCCAS62034.2024.10652850
https://doi.org/10.1145/3649329.3658488
https://doi.org/10.1109/JETCAS.2025.3555970
https://doi.org/10.1088/1748-0221/3/08/S08002
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1088/1748-0221/3/08/S08005
https://doi.org/10.1140/epjc/s10052-025-14156-3
https://doi.org/10.1007/978-3-031-63751-3_6

[17] Kiehn, Moritz, Amrouche, Sabrina, Calafiura, Paolo, Estrade, Victor, Farrell, Steven and

et al., The TrackML high-energy physics tracking challenge on Kaggle, EPJ Web Conf.
(2019), doi:10.1051/epjconf/201921406037.

[18] AMD Technical Information Portal, Zynq UltraScale+ MPSoC Data Sheet: Overview, AMD.

https://doi.org/10.1051/epjconf/201921406037

	Introduction
	Background
	Tracking algorithms
	Datasets

	Implementation and results
	Development flow
	Quantization effects
	Resource consumption

	Conclusion
	References

