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Abstract

High-Energy Physics experiments are rapidly escalating in generated data volume, a
trend that will intensify with the upcoming High-Luminosity LHC upgrade. This surge
in data necessitates critical revisions across the data processing pipeline, with particle
track reconstruction being a prime candidate for improvement. In our previous work,
we introduced “TrackFormers”, a collection of Transformer-based one-shot encoder-only
models that effectively associate hits with expected tracks. In this study, we extend our
earlier efforts by incorporating loss functions that account for inter-hit correlations, con-
ducting detailed investigations into (various) Transformer attention mechanisms, and a
study on the reconstruction of higher-level objects. Furthermore we discuss new datasets
that allow the training on hit level for a range of physics processes. These developments
collectively aim to boost both the accuracy, and potentially the efficiency of our tracking
models, offering a robust solution to meet the demands of next-generation high-energy
physics experiments.

1 Introduction

The High-Luminosity LHC (HL-LHC) will generate unprecedented volumes of collision data,
creating significant challenges for particle track reconstruction, where tens of thousands of
detector hits must be accurately associated with their originating particles. Traditional recon-
struction methods, while precise, struggle to scale efficiently to these data rates. Transformer-
based machine learning models offer a promising alternative: in prior work, we introduced
“TrackFormers”, encoder-only, one-shot transformers that map hits directly to particle tracks.
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In this study, we extend this approach by exploring a new design combining geometric pro-
jection and lightweight clustering, a joint model conditioning classification on a regressor’s
predictions, and FlexAttention. To support model training and evaluation, we provide a fully
reproducible ACTS-based hit-level dataset spanning signal and background processes across
multiple pileup levels.

2 Improved methods

2.1 New datasets

We created a new hit-level dataset with a fully reproducible ACTS-based pipeline combining
Monte-Carlo event simulation, detector response, and TrackML-style postprocessing.

The signal process is pp→ t t̄H, H → bb̄ and the main background is inclusive pp→ t t̄.
Both are generated with Pythia8, producing stable truth-level particles as a starting point.
Events are subsequently transported through a TrackML detector using the ACTS fast simula-
tion (Fatras) and digitized into realistic channel-level measurements. This provides low-level
hit data for machine learning models. From these digitized hits we further derive TrackML-
style per-event triplets (hits.csv, particles.csv, truth.csv) with global coordinates
and physics-motivated per hit weights.

We generate datasets at pileup levels 0, 5, 20, 50, and 200, each with 40k events (20k
signal, 20k background).

2.2 Improved model design

2.2.1 Masking and projection

The quadratic scaling of attention with hit count renders naive transformers impractical for
full pixel-detector HL-LHC events (sequence lengths > 6×104). We address this with a hybrid
design that combines geometric projection, clustering, and FlexAttention to exploit tracking
locality, reducing attention cost by up to 400×.

As shown in Figure 1, hits are projected onto simplified detector surfaces to minimize track
spread: a cylinder (R = 91mm) for the barrel (using R–φ, z coordinates) and two planes
(z = ±920mm) for the endcaps (using x , y). For barrel regions, this makes tracks compact
in (R–φ, z). For endcaps, cluster alignment is refined by reprojecting clusters over candidate
z-vertex positions and selecting the z that maximizes alignment.

Light weight clustering (an iterative windowing algorithm developed by the authors) or
DBSCAN is then applied on these projected surfaces to form local neighborhoods. Clusters on
the cylindrical surface define sparse block masks for FlexAttention, ensuring that only physi-
cally plausible hit pairs attend and reducing the effective attention matrix by up to ∼ 400×.
Endcap clusters use the vertex-z scan described above to sharpen alignment in the longitu-
dinal direction. Clustering hyperparameters are tuned to maximize the reconstructible ratio,
defined as tracks with pT > 0.9 GeV, having ≥ 3 hits, and ≥ 50% of those hits in a single
cluster. Block masks are precomputed and cached for efficient reuse during training.

The encoder is a PyTorch Transformer with FlexAttention (12 layers, 4 heads, hidden di-
mension 192, feed-forward dimension 384). Input (x , y, z) hits are projected, clustered, and
normalized. Training used AdamW with bfloat16 mixed precision on NVIDIA H100s, gradi-
ent clipping, and an adaptive learning rate schedule. The model was trained on 8 658 TrackML
events with 96 validation and 96 test events.

Rather than regressing track parameters, the model maps each hit to a 32-dimensional
embedding and is trained with a multi-positive InfoNCE contrastive loss: for each hit, all hits
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Figure 1: Top: the projection surfaces used for hit mapping, with the cylindrical
barrel in green, two planar endcaps in red, and pixel detector layers in blue [1].
Bottom: pixel detector hits of one event projected onto these three surfaces.

from the same track (pT > 0.9 GeV) are positives, while all others are negatives. At inference,
the model produces an N × N cosine-similarity matrix, from which tracks are assembled by
selecting high-similarity neighbors, eliminating the need for a separate clustering stage.

2.2.2 Joining regression and classification

In this experiment, we combine our strongest prior architectures into a unified two-stage
model. Stage 1 is an EncReg-style encoder-only Transformer [2] that regresses track parame-
ters (θ , sinφ, cosφ, q∈{−1, 1}) together with four learned free latent variables. Here θ and φ
are spherical momentum angles (p =

q

p2
x + p2

y + p2
z , θ = arccos(pz/p),φ = arctan 2(py , px)).

Stage 2 is an EncCla-style encoder-only Transformer for per-hit classification. For each hit
we concatenate the raw coordinates with the regressor outputs,

(x , y, z,θ , sinφ, cosφ, q, latent1, . . . , latent4),

project to an embedding, and pass through encoder blocks. A final linear head produces
a categorical distribution over quantile-binned (φ,θ , p, q) classes; the predicted class is the
maximum-probability bin. Although regressed parameters are already predictive, they further
enrich the classifier’s input features.

The model is trained end-to-end with a joint loss

L= αLreg + β Lcla, α= 1, β = 0.3,

where Lreg is per-hit MSE on (θ , sinφ, cosφ, q) and Lcla is cross-entropy over class labels.
The joint model, denoted JM X :Y with X regressor layers and Y classifier layers, retains

the one-pass property of both components: a single forward pass produces track parameters
and per-hit classes, enabling downstream use without extra clustering stages.
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2.2.3 FlexAttention

In our previous work [2] we experimented with FlashAttention [3]; here we instead adopt
FlexAttention [4]. This change is driven by a key limitation of FlashAttention: its lack of flexi-
ble, batch-wise pad masking for variable sequence lengths. As a result, training was restricted
to a batch size of one to avoid padding. FlexAttention overcomes this constraint through its
BlockMask mechanism, which enables processing of heterogeneous events within the same
batch while maintaining near state-of-the-art kernel performance [4]. With FlexAttention, we
preserve the GPU inference speedups previously observed, now without the batch size restric-
tion. Equally importantly, its memory efficiency allowed us to co-train both the regressor and
classifier on a single NVIDIA A100 GPU (40 GiB HBM2), whereas with FlashAttention only one
of these models could fit on the same hardware during training.

3 Results

3.1 Masking and projection

A breakdown of inference latency is as follows:

• Clustering: projected best-case 6 ms with parallel DBSCAN,

• Block-mask creation: 2 ms per event,

• Transformer encoder: 20 ms per event,

• Track–hit assignment: 47 ms per event.

The resulting end-to-end runtime is on the order of tens of milliseconds per event, signifi-
cantly faster than existing GNN pipelines (0.5–1 s) [5] and comparable to the state of the art
(∼100 ms) [6].

In terms of physics performance, our model achieves ∼90% track double-majority effi-
ciency in the barrel and 91% in the endcaps after vertex-z refinement. Efficiencies in the
barrel are uniform across pT , with expected drops at low |η| and near |η|≈2.0 due to detector
geometry.

Relative to the EncReg and EncCla models from our previous iteration, which achieved
∼70% efficiency on reduced TrackML datasets (∼5% HL-LHC density), the present design
scales to tens of thousands of hits per event while maintaining sub-200 ms inference latency
and improved efficiency. These results establish projection-based clustering with FlexAttention
and contrastive similarity learning as a practical solution for HL-LHC scale tracking.

3.2 Joining regression and classification

The accuracy and TrackML score [1] for JM and EncCla models with FlexAttention are shown
in Table 1. Deeper models (more encoder layers) consistently improve both metrics. Adding
EncReg and passing its regressed parameters to EncCla yields an additional ∼2.4% accuracy
and ∼2% TrackML score gain. Unlike EncCla, the regressor showed little benefit from greater
depth, so EncReg was kept shallow.

Inference times are modest: CPU latency is stable at 0.1 ms across all models, while GPU
latency scales linearly with depth, adding ∼2.4 ms per encoder layer on an NVIDIA A100
(40 GiB).

Overall, scaling encoder-only Transformer trackers and coupling regression with classifica-
tion in a single forward pass substantially improves performance over previous work. EncCla
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Model
EncCla

6
JM
6:6

EncCla
7

JM
7:7

EncCla
9

JM
7:9

EncCla
15

JM
9:15

Accuracy 69.7% 72.8% 74.2% 76.6% 76.2% 78.4% 78.5% 80.5%

TrackML score 79.9% 82.3% 84.2% 86.4% 87.3% 89.0% 89.8% 91.4%

Table 1: The accuracy and TrackML scores of different models across Joined Model
(JM) and EncCla configurations. The best scores are print in bold and the second
best are underlined. The numbers after the model name signal the layer depth. For
JM configurations the first number denotes the layer depth of the regressor and the
second number denotes the layer depth of the classifier.

Model
EncCla

6
JM
6:6

EncCla
7

JM
7:7

EncCla
9

JM
7:9

EncCla
15

JM
9:15

CPU inf. time (ms) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

GPU inf. time (ms) 16.1 31.6 18.5 38.2 24.0 42.8 39.0 61.6

Table 2: The CPU inference time and GPU inference time per event in milliseconds of
different models across Joined Model (JM) and EncCla configurations. The numbers
after the model name signal the layer depth. For JM configurations the first number
denotes the layer depth of the regressor and the second number denotes the layer
depth of the classifier.

models show monotonic gains in TrackML score with depth, reaching 89% (vs. 78% previ-
ously). Injecting physics-based features from the regressor into the classifier provides a further
∼2% absolute uplift. These improvements are enabled by FlexAttention, which allows deeper
architectures to train on the same hardware, albeit with roughly doubled GPU inference time.

4 Conclusion and future work

We release a fully reproducible ACTS-based hit-level dataset of pp → t t̄H, H → bb̄ signal
and pp → t t̄ background events, providing TrackML-style formats across multiple pileup
conditions (0–200) to enable realistic large-scale tracking benchmarks for machine learning
models. In our experiments with new model architectures, we have shown that projection-
based clustering combined with FlexAttention block masking provides an efficient way to scale
transformer-based trackers to HL-LHC hit densities, cutting attention cost by up to 400× while
retaining end-to-end inference times in the O(102)ms range. In addition, deeper encoder-only
architectures continue to deliver strong performance, while fusing regressed parameters into
the classifier provides modest but consistent improvements. All of these gains are achieved
within a single end-to-end inference call, preserving the simplicity that makes encoder-only
designs appealing for HL-LHC deployment.
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