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Abstract. Track reconstruction is a crucial part of High Energy Physics experi-
ments. Traditional methods for the task, relying on Kalman Filters, scale poorly
with detector occupancy. In the context of the upcoming High Luminosity-
LHC, solutions based on Machine Learning (ML) and deep learning are very
appealing. We investigate the feasibility of training multiple ML architectures
to infer track-defining parameters from detector signals, for the application of
offline reconstruction. We study and compare three Transformer model designs,
as well as a U-Net architecture. We describe in detail the two most promising
approaches and benchmark the pipelines for physics performance and infer-
ence speed on methodically simplified datasets, generated by the recently devel-
oped simulation framework, REDuced VIrtual Detector (REDVID). Our second
batch of simplified datasets are derived from the TrackML dataset. Our prelim-
inary results show promise for the application of such deep learning techniques
on more realistic data for tracking, as well as efficient elimination of solutions.

1 Introduction

The move from the current Large Hadron Collider (LHC) to its High-Luminosity variant
(HL-LHC) is expected to catapult data processing requirements, due to the scale increase of
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event frequency and event hit count. This development will bring new challenges to both the
speed and complexity of data processing in tasks such as particle trajectory reconstruction,
a.k.a., tracking. For instance, increased number of collisions will translate to higher pile-up
rate (higher u value), which in turn will dictate more sophisticated algorithm developments.

Traditional algorithms that are currently in place, e.g., algorithms based on Kalmar filter-
ing, though well-designed, have inherent limitations, rendering these incapable in the face of
expected scale and complexity levels. To address such limitations, Machine Learning (ML)
is considered to be at the core of the next generation of solutions. ML models are capa-
ble of consuming high amounts of data at every instance by design. They excel at learning
non-linear relationships and mappings between an input and a corresponding output. Main
difficulties with ML model development are arriving at the right design and fulfilling high
resource requirements.

We tackle the specific challenge of tracking using ML models, and showcase our two most
promising pipeline designs, out of four total. We adopt a methodology of increasing problem
complexity that enables efficient exploration and evaluation of ML model designs, and we
report a number of efficiency metrics for a few simplified problem definitions. Furthermore,
we demonstrate the potential of the proposed solutions in terms of computational efficiency
as well. Tracking as a task involves two main steps, associating (clustering) hits to respective
particles/tracks and formation of a track function that interpolates associated track hits. We
specifically focus on the former, which is the more challenging of the two.

2 Background and motivation

In the Large Hadron Collider (LHC), either protons or heavy ions are made to smash into
one another in so-called events. These events in turn release a plethora of subatomic particles
which are detected via tracking and calorimetry. Sophisticated detectors, such as ALICE [1],
ATLAS [2], CMS [3], and LHCb [4], allow us to measure the footprint of individual particles
as they travel through space. They are each equipped with dedicated tracking detectors de-
signed to measure the trajectories of charged particles by recording hits — the points in which
the particles pass through them. The connecting of these hits into physical particle trajecto-
ries, i.e., tracking, is a crucial task in HEP experiments, for which a multitude of methods
have been developed.

Proposed algorithms are extensively tested and validated using datasets for their expected
characteristics, such as tracking reconstruction efficiency and computational efficiency. This
is especially the case for ML models. Simulations make for suitable data generators, with
FATRAS and ATLFAST being some well-known examples.

Traditional methods to assign hits to track candidates include the Kalman Filter (KF).
Both stages of tracking rely on the KF [5], with the track finding phase using a so called
Combinatorial Kalman Filter (CKF). The combinatorial nature and inherent sequential exe-
cution make these methods scale poorly for the HL-LHC. The currently utilised algorithm is
tested on simulated data of events with pile-up of y = 200 [6], which is similar in complexity
to the largest dataset evaluated in this paper. The KF pipeline takes 214.3 HS06 X seconds
for a single event, translating to around 12 seconds CPU-time'. An optimised algorithm with
tighter track selection in the track finding stage achieves a 7x speed-up, requiring 1.8 seconds
of CPU-time per event [6].

IThe CPU-time is multiplied by the HS06 factor of 17.8 for single-threaded execution. HS06 is a benchmark for
measuring CPU performance in HEP. Further information: https://w3.hepix.org/benchmarking/HS06.html
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3 Related work

Recent advances in machine learning have led to the exploration of Deep Neural Networks for
particle tracking. Graph Neural Networks (GNN5s) in particular have emerged as a promising
choice and the current state-of-the-art has focused on GNN-based solutions, with [7-10] as
the most recent efforts. These methods predict, prune or assign weights to edges between
vertices (hits) to construct physical trajectories [11]. A recent successful approach [12, 13]
involves constructing a graph by connecting hits from different detector layers that satisfy
geometric constraints, then clustering hits of the same track in a learned space using object
condensation, and finally regressing the properties of the reconstructed objects. One bench-
mark for GNNs reports an inference time of 2.2s wall-clock time (including data transfer
to GPUs) on the full TrackML events, using an NVIDIA A100 GPU [14]. This approach
involves significant pre- and post-processing of the data and reports a TrackML accuracy of
about 0.87 — more about this metric will follow in Section 5.

Other approaches consider iterative improvements to traditional algorithms or partial
inclusion of ML models, as done, for instance, with “A Common Tracking Software
(ACTS)” [15]. We seek a solution predominantly relying on ML models as its core building
block, operating as a single-pass algorithm. As such, we find the Transformer architecture as
a potent candidate to be explored. Research using the Transformer architecture has already
been developing with many applications in HEP, e.g., [16-18].

When it comes to datasets for evaluation, the most notable trend is the de facto use of
TrackML [19] data. ML model training, however, is computationally expensive, leading
researchers to often reduce the data. Most commonly, research only considers data associated
with the pixel detector [8, 10]. Some works further reduce noise hits [20, 21] or filter for
limited Py values [22]. The lack of consensus for a common data reduction protocol makes
performing direct comparisons between different models challenging.

4 Methods

We investigate four different tracking pipelines but only the two best performing ones are
elaborated on in this paper. Both are based on the Transformer model architecture, and make
use of its encoder only variant. We also experiment with an encoder-decoder Transformer
(EncDec) that autoregressively rebuilds a track given a seed hit, and a U-Net architecture
which assigns image pixels to different tracks, and we present their results as well.

The Transformer is a deep learning architecture that enables the modelling of pair-wise
relationships among elements in sequential data by leveraging the attention mechanism [23].
It can be used to process sequences with permutation equivariance and work with variable
input lengths, which is an advantage for the task of trajectory reconstruction. It consists
of two structures: an encoder, which learns latent representations of the input sequence of
tokens, and a decoder which auto-regressively generates the output sequence. The atten-
tion mechanism allows the model to embed the context of the entire input sequence into the
representation of each token. The vanilla attention mechanism is a rather compute-heavy op-
eration, which leads to a quadratic memory and time complexity of the Transformer and can
restrict its application to very long sequences. Thus, optimisation techniques to reduce the
cost of attention computations have been developed, such as Flash Attention [24].

4.1 Model designs
EncCla

The first model is used as a classifier. It takes as input a sequence of non-discretized hits,
all from a single event, and outputs a sequence of class labels, one for each hit. To handle



variable input lengths, we use padding up to the maximum number of hits in the current
batch. Consequently, masking is used to ensure that the attention mechanism ignores the
padding values. The class labels correspond to track IDs, and are defined by discretizing the
track parameter space into a fixed number of classes. For that, we bin each parameter using a
quantile-based approach, so that each bin contains roughly an equal number of hits. The class
labels are created from all unique combinations of track parameter bins. This constructing of
track classes a priori can only be done up to a finite granularity and is the main challenge of
EncCla as it can hinder clustering in high density environments.

The model consists of an embedding layer, a number of encoder blocks and an output
layer. For every dataset, a different set of hyperparameters are used. For the biggest dataset,
the model has 6 encoder layers, embedding dimensionality of 128, hidden layer dimension-
ality of 256, 8 attention heads and dropout of 10%. Moreover, the used track parameters
are phi, theta, g, and p, binned in 30, 30, 2 and 3 bins respectively, making a total of 5400
classes.

EncReg

The second proposed approach has the same model structure and input, and also utilizes
padding and masking. However, it is a regressor that takes the hit coordinates of a single
event and outputs for every hit its corresponding regressed track parameters. A clustering
algorithm, HDBSCAN [25], is run on the regressed track parameter space to group hits with
similar track parameters. The biggest challenge for EncReg is the discovery of track param-
eters that sufficiently define a track and can be learned by the model.

A different model is trained for every dataset. For the largest dataset utilised, where the
attention computation requires a significant amount of memory and limits the batch size
and train time, we train two EncReg models: one with exact attention, and one with Flash
attention (EncReg-FA), where measures are taken to improve the memory consumption of
the attention computation, and consequently training and hyperparameter tuning are sped-up.
We do not consider Flash attention for the other datasets as their power and time consumption
is still manageable. For EncReg-FA, we also make use of mixed precision training, which
the Flash Attention implementation relies on?. EncReg-FA has 7 encoder layers, embedding
dimensionality of 128, hidden layer dimensionality of 256, 4 attention heads and dropout of
10%. The regressed track parameters are sin(phi), cos(phi), theta and g.

The main advantage of these models is that they perform hit-to-track assignment in
one step, i.e., the inference time of the model itself scales sub-quadratically with the number
of hits. However, this may not be the case in practice, as the complexity of the model
must increase with the number of hits. The potential for fast processing also opens the
possibility for these models to be utilised as refiner networks to be added in a second stage
of the pipeline. For instance, a refiner which regresses track parameters per cluster, i.e., per
reconstructed track, and identifies falsely associated hits, increasing the purity of the cluster.

4.2 Datasets

The datasets used to assess our particle tracking methods are simplified and reduced in com-
plexity, enabling ease of evaluation. They cover a spectrum of scale and track representation
detail — by increasing the problem complexity in both dimensions, we can efficiently assess
the performance and robustness of candidate tracking algorithms. As such, we consider the
following five datasets:

2This is a reliance imposed by the utilised framework, PyTorch.



10-50 (variable count) linear tracks per event, generated with REDVID,
10-50 (variable count) helical tracks per event, generated with REDVID,
50-100 (variable count) helical tracks per event, generated with REDVID,

10-50 (variable count) tracks per event, extracted from the TrackML dataset,

200-500 (variable count) tracks per event, extracted from the TrackML dataset.

The first three datasets are created using the REDVID simulation framework [26]. Track
function complexity varies between linear and expanding helical, with the latter representing
a simple emulation of charged particles in a magnetic field. The 3D geometric space is defined
in cylindrical coordinate system, considering r, 8 and z coordinates.

The other two datasets are derived from the previously mentioned TrackML data by se-
lecting a number of tracks at random per event. The 3D hit coordinates are in a Cartesian
coordinate system, with the global Z-axis defined along the beam direction [19]. The dataset
contains ten values associated with every particle and we make use of four of those as track
defining parameters: the charge ¢, and the initial momentum (in GeV/c) along each global
axis (px, py, p;)- The momenta are transformed from the global into the spherical coordinate
system. Another preprocessing step is normalising the data.

5 Results

To measure the prediction accuracy of our model design, we consider a custom metric: FitAc-
curacy score. It is essentially identical to the TrackML score [27], with a small modification
in the case of REDVID-generated datasets. The TrackML score is calculated based on the
association of weights to hits in the TrackML data. REDVID simulations do not consider
weights, so we consider the weight value of 1 for all hits to arrive at our custom FitAccuracy
value. In this fashion, we can have a single comparable scoring for all datasets and model
designs. In the definition of the TrackML score and FitAccuracy, reconstructed tracks with
four or more hits are considered. At least 50% of a reconstructed track’s hits must originate
from the same truth particle for that track to be considered for the scoring. The score of a
track is the sum of correctly assigned hit weights. Available scoring is provided in Table 1.

Table 1: FitAccuracy scores of the four models per dataset. Note that for EncDec, the model
starts out with a seed. These seed hits are not counted towards the accuracy.

FitAccuracy score

Dataset EncDec EncCla EncReg EncReg-FA U-Net
REDVID - 10-50 linear tracks 93% 93% 97% - 68%
REDVID - 10-50 helical tracks 85% 93% 92% - 62%
REDVID - 50-100 helical tracks 85% 88% 85% - 57%
TrackML - 10-50 tracks 26% 94% 93% - -
TrackML - 200-500 tracks - 78% 70% 67% -

We consider three additional physics performance metrics (taken from [13]) to further
investigate the achieved performance with the EncReg model design. Considering the below
definitions, the achieved scores are listed in Table 2.

e Perfect match efficiency €”*'/: The fraction of reconstructed tracks in which all hits belong
to a single particle from the ground truth, normalised to the number of particles.



e LHC-style match efficiency €¥C: The fraction of reconstructed tracks in which at least
75% of the hits are of the same particle, normalised to the number of reconstructed tracks.

e Double majority match efficiency €”™: The fraction of reconstructed tracks in which at
least 50% of the hits belong to the same particle and it has less than 50% of its hits outside
of the reconstructed track, normalised to the number of particles.

Table 2: The three efficiency scores for the EncReg model given per dataset. Note that the
results reported in parentheses correspond to EncReg-FA.

Dataset ererf eLHe ePM
REDVID - 10-50 linear tracks 94% 97% 98%
REDVID - 10-50 helical tracks 78% 94% 96%
REDVID - 50-100 helical tracks 60% 89% 92%
TrackML - 10-50 tracks 78% 91% 97%
TrackML - 200-500 tracks 40% (36%) T15% (712%) 82% (79%)

Beyond physics performance, we also consider the computational effort required. The
cost of inference is especially interesting, since tracking is possibly to be deployed in an
online (embedded in the data-taking pipeline), or semi-online fashion. Each dataset and
model combination will impose a different cost. Table 3 lists the computational cost in terms
of CPU-time and GPU-time at inference. HDBSCAN is run fully on the CPU and thus for
EncReg the CPU-side refers, for the most part, to the clustering algorithm, while the GPU-
side refers to the Transformer regressor. Note that we report the time performance only of the
solutions with the highest physics performance. We omit the first iteration in inference loops
to avoid cold-start effects. All Transformer models have been trained and evaluated on an
NVIDIA A100 GPU with 40 GB HMB2 and 18 CPU cores, on the Snellius supercomputer?.
As explained in Section 3, since related work apply custom protocols to generate TrackML
subsets, a direct comparison in terms of computational effort cannot be made.

6 Conclusion and future work

Considering the results given in Tables 1 and 2 and the computational efficiency values from
Table 3, the EncCla and EncReg designs, and generally the Transformer architecture, hold
potential for further development. However, as explained, the absence of a common data
reduction protocol and presence of pre- and post-processing steps, render comparisons to
existing solutions as rough approximations. We believe that following a single-pass design,
as seen in our pipelines, would be the most effective way to reduce extra steps and to minimise
the computational cost to that of inference alone.

One detail to be aware of is the potential need for larger models when addressing more
realistic data. This could be a requirement to deal with the increase in scale and complexity of
the problem, which would be the case for all competing designs. On the question of “which
of the proposed approaches is to be chosen for further development?”, the revealing qualities
of the physics performance metrics described in Section 5 are highly valuable. Employment
of further denominations of such metrics will be the key in validating different aspects of ML
models intended for the task of tracking.

Considering the dramatic reduction in computational resource requirements with the use
of Flash Attention, we can conclude that a fully ML-based tracking solution is within reach.

3hllps://www.surl".nl/en/services/snellius— the-national-supercomputer
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Table 3: Mean CPU-time and mean GPU-time collections during inference, per event.

Dataset Model Infer. (CPU-side) Infer. (GPU-side)
. EncCla 0.1 ms 4.0 ms
REDVID - 10-50 linear tracks EncReg 8.3 ms 2 4 ms
. EncCla 0.1 ms 4.1 ms
REDVID - 10-50 helical tracks EncReg 2.7 ms 23 ms
. EncCla 0.1 ms 4.3 ms
REDVID - 50-100 helical tracks EncReg 18.6 ms 41 ms
EncCla 0.1 ms 4.0 ms
TrackML - 10-50 tracks EncReg 5.8 ms 22 ms
EncCla 0.1 ms 7.0 ms
TrackML - 200-500 tracks EncReg 70.5 ms 31.9 ms
EncReg-FA 72.2 ms 3.6 ms
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