Model Parallelism on Distributed Infrastructure: A Literature
Review from Theory to LLM Case-Studies

Felix Brakel Uraz Odyurt Ana-Lucia Varbanescu
Informatics Institute, University of High-Energy Physics, Radboud Computer Architecture for Embedded
Amsterdam University Systems, University of Twente

Amsterdam, The Netherlands
Vrije Universiteit Amsterdam

Nijmegen, The Netherlands
National Institute for Subatomic

Enschede, The Netherlands
Informatics Institute, University of

Amsterdam, The Netherlands Physics (Nikhef) Amsterdam
felix.brakel@student.uva.nl Amsterdam, The Netherlands Amsterdam, The Netherlands
uodyurt@nikhef.nl a.l.varbanescu@utwente.nl

ABSTRACT

Neural networks have become a cornerstone of machine learning.
As the trend for these to get more and more complex continues,
so does the underlying hardware and software infrastructure for
training and deployment. In this survey we answer three research
questions: “What types of model parallelism exist?”, “What are the
challenges of model parallelism?”, and “What is a modern use-case
of model parallelism?” We answer the first question by looking
at how neural networks can be parallelised and expressing these
as operator graphs while exploring the available dimensions. The
dimensions along which neural networks can be parallelised are
intra-operator and inter-operator. We answer the second question
by collecting and listing both implementation challenges for the
types of parallelism, as well as the problem of optimally partitioning
the operator graph. We answer the last question by collecting and
listing how parallelism is applied in modern multi-billion parameter
transformer networks, to the extend that this is possible with the
limited information shared about these networks.

KEYWORDS

Model parallelism, Auto-parallelism, Transformers, Distributed
deep learning

1 INTRODUCTION

Neural networks have become a cornerstone in machine learning,
offering solutions for complex prediction tasks. As these networks
grow in complexity, both computational requirements and memory
footprint for training and inference, increase proportionally.

The increase in computational requirements is due to the greater
number of operations needed to perform tasks like forward and
backward passes during training. More complex models often have
more layers, more neurons, or more sophisticated architectures,
all of which contribute to an increased number of mathematical
operations. Similarly, the memory footprint increases because more
complex models require more parameters, and each parameter
needs to be stored in memory. Additionally, intermediate values
generated during computation also consume memory, and their
number grows with the complexity of the model.

One way to continue meeting these computational demands is
through model parallelism: by partitioning the model the workload
can be spread out over multiple devices. However, the data-intensity

of neural network workloads makes this non-trivial. Both the pa-
rameters and the data flowing through the network are of consid-
erable size and when distributing the neural network over multiple
devices this data now has to be send over an interconnect such as a
high-speed NVLink bridge or a regular Ethernet connection.

Compared to fetching of data from memory, these interconnects
pose serious bandwidth limitations. Even when only considering a
single server, where devices can send data over NVLink, the band-
width is already a factor two below that of the A100’s DRAM [7].
Often however, we are trying to scale even beyond this to mul-
tiple nodes, where communication between nodes passes over a
comparably glacial network built on for example, Ethernet.

Model parallelism then has the potential to meet the ever-growing
demands computational demands of neural networks. In this survey
we aim to provide a view on model parallelism by answering the
following questions:

(1) What types of model parallelism exist?
(2) What are the challenges of model parallelism?
(3) What is a modern use-case of model parallelism?

Outline. Section 2 defines the considered constraints in our study
design, followed by a detailed background on model parallelism in
Section 3. Section 4 covers the collected challenges, while Section 5
delves into the details of collected use-cases. Following relevant
discussions in Section 6, we conclude in Section 7 by revisiting our
initial research questions.

2 STUDY DESIGN

This study consists of two distinct phases. In order to provide a
theoretical framework for neural network workloads and to tackle
the first research question “What types of model parallelism exist?”,
the first phase consists of a study in Deep Neural Network (DNN)
auto-parallelisation. DNN auto-parallelisation formulates model
parallelism in a form suitable for search algorithms. The literature
collection process for this phase was done using a snowballing
approach, with the 2023 survey by [16] as seed. The available papers
were filtered according to the following criteria:

(1) Code state: Available - 22 papers left after filtering

(2) Code state: Actively maintained - 8 papers

(3) Neural network training type: Fully automated - 7 papers

(4) Compatibility with existing file formats - 6 papers

In order to answer the second and the third research questions,

the second phase consists of a study into how model parallelism

https://orcid.org/0009-0004-1730-3005
https://orcid.org/0000-0003-1094-0234
https://orcid.org/0000-0002-4932-1900

is used in modern Transformer networks. This phase too was per-
formed following a snowballing approach. The seeds for the second
phase are the models from Figure 1 (taken from [29]) and Table 1
(taken from [8]).

1000
g GPT-3 - Megatron-Turing
- (175B) ° NLG (530B)
£ 100
o -
3 Megatron-LM ',”
“— 4 Turing-NLG
o (8.38) el (17.28)
a 10 oY :
o v T5
= i (118B)
o ya
£ F GPT-2
g (1.5B)
n e
< s BERT-Large
B oa ‘ (340M)
=
ELMo
(94m)
0.01
2018 2019 2020 2021 2022

Figure 1: Megatron-NLG compared to other large language
models (source: [29]).

Table 1: Comparison of different Transformer models
(source: [8]).

Model # Parameters Hardware Utilisation
GPT-3 175B V100 21.3%
Gopher 280B 4096 TPU v3 32.5%
Megatron-Turing 530B 2240 A100 30.2%
PaLM 540B 6144 TPUv4 46.2%

This phase resulted in the collection of four papers on the Mega-
tron family of models, one about Gopher, two about PaLM and two
about GPT, listed further ahead in Table 2. Sadly, details about the
implementations of these models, as it pertains to model parallelism,
are scarce. Thus, we filter the papers on the availability of these
details, after which, we are left with the mentioned four papers on
Megatron, the paper about Gopher and one paper about PaLM.

3 MODEL PARALLELISM

Model parallelism in neural networks is characterised by partition-
ing the model itself and distributing the partitions over multiple
compute devices. This approach offers potential benefits, both in
model throughput and in lowering per-device memory require-
ments. To further define what model parallelism is, we first offer a
framework for reasoning about neural networks from a computa-
tional perspective. We provide a background on model parallelism
as neural networks operating in the Single Instruction Multiple

F. Brakel et al.

Data (SIMD) form. Following that, we answer the first research
question, i.e., “What types of model parallelism exist?”, considering
theoretical and implementation-related perspectives.

3.1 Background

In machine learning we distinguish between two phases: training
and inference. At training-time we train a model on a set of data
called the learning set. At inference-time we task the trained model
with making predictions on new, unseen, data.

One of such models is a neural network and for complex predic-
tion tasks they dominate the state of the art. We will give a more
detailed explanation of a neural network in Section 3.1.2 but for
now a conceptual explanation will suffice.

Neural Networks (NNs) are, as the name suggests, made up of
artificial neurons. The neurons are organised in layers. Neurons in
a layer all perform the same operation on their input data and thus
these layers are also referred to as operators. Layers have weighted
connections between and it is by adjusting these weights during
training time that the NN is able to learn. These weights are referred
to as model’s parameters.

3.1.1 Scaling up networks. As the field of machine learning has
progressed models have become ever larger [26] and it is through
this lens that designing NNs presents an engineering challenge as
scaling up a NN has the following effects:

(1) A larger NN has more neurons performing operations and
thus requires more compute.

(2) Alarger NN has more parameters and thus requires more
memory to store these.

(3) Having more training samples requires more passes and
thus more compute.

From this, it is clear that hardware limitations pose limitations for
scaling up NNs. In fact, model parallelism is actually amongst the
methods aimed at achieving continued progress when it comes to
scaling up NNs. An overview is depicted in Figure 2.

Scaling up Neural Networks

More layers
Wider layers
More training data
I
Bounded by

Hardware Limitations

Layers don't fit in memory
Training requires more device-hours

[
Addressed by
)
! v

Optimizations Parallelism

Checkpointing
Model compression
Algebraic transformations

Data parallelism
Model parallelism

Figure 2: Overview of scaling up NNs within the NN compute
infrastructure.

Model Parallelism on Distributed Infrastructure: A Literature Review

We also provide the overview of model parallelism in the form
of a taxonomy, Figure 3, generated from the frequent key-terms.

3.1.2 Neural network workloads. Compute Flow Graphs (CFGs) are
widely used to represent workloads. In keeping with [16, 13, 1], we
will be expressing a NN as a variant of a CFG called an operator
graph. In this graph, data is represented by tensors and computation
by operators.

The term tensor is one that comes up a lot in the context of ma-
chine learning. While in mathematics a tensor has a more rigorous
definition, in the context of NNs, tensors describe n-dimensional
arrays of data, flowing through the network. We will regularly
mention two named tensors: the input tensor X and the output ten-
sor Y. Additionally, we distinguish between parameter tensors and
activation tensors. Parameter tensors are static inputs to operators,
while activation tensors are the result of said operators. Operators
are the functional units of the NN. These represent a computation,
e.g., a matrix-multiplication or a convolution, performed on any
number of input tensors and resulting in a single output tensor.
Operators and tensors are organised into an operator graph.

In an operator graph O = (V,E) of a given NN, every node
v; € V is either an operator o;, with an associated activation tensor
To,, or a tensor T;. Every edge e;;(v;,0;) € E indicates the tensor
associated with v;, is an input to the operator node o;. Consider
Figure 4 as a visual explanation. A fully connected layer in a NN
(Figure 4a) can be represented as an operation on two tensors, I
and W, resulting in a third tensor, O (Figure 4b). Figure 4c shows
how we represent operations on tensors as a graph.

Using this representation we define two workloads: the forward
pass and the backward pass. The forward pass takes the input tensor
X and computes all the activations, resulting in Y. The backward
pass updates parameters tensors using the back-propagation algo-
rithm. The exact workings for the back-propagation algorithm are
beyond the scope of this survey, but we will note the following
relevant characteristics:

e Starts at the output Y and works its way back to X, making it
dependent on the result of the forward pass.

e It requires the activation tensor of every operator to calculate
how it should update its parameters.

Training consists of b forward passes followed by b backward passes,
with b as batch size. Inference only consists of forward passes.

3.1.3 Pushing the limits of hardware. Neural networks have reached
a scale, both in terms of compute and memory requirements, where
we are arriving at the limits of what current available hardware are
capable of. Consequently, there has been significant effort chan-
nelled into finding ways to push these limits. Checkpointing [6]
provides a memory-compute trade-off for the training process. Re-
call that during the backward pass we require the activation tensor
T,, for every operator, which were computed during the forward
pass. Checkpointing trades some of the memory requirements for
storing this for compute by strategically storing only some of the
tensors and recomputing the rest from these checkpointed tensors.
Algebraic transformations [31] create an equivalent neural network
by merging and reordering operators, aiming at a reduction of both
computational complexity and memory footprint.

Both checkpointing and algebraic transformations fully preserve
the neural network, but it can also be beneficial to trade some
accuracy in representing the network in memory, in order to fit a
larger one. For example, using a lower precision data type, such as
a 16-bit float instead of a 32-bit float, hurts accuracy. However, the
memory saved by this change can be used to store more parameters,
which can in turn lead to a greater accuracy gains.

Another approach is to compress a large model into a smaller
one [23]. This method still requires the training of the larger model
variant and thus, contributes only to the inference speed. Prun-
ing is the process of removing unimportant neurons resulting in
a sparse network. Which neurons to remove while maintaining
model accuracy and how to effectively compute sparse neural net-
work workloads is an active area of research. Distillation is another
model compression technique where we try to use a large network
in order to train a smaller one, i.e., distil the knowledge present
in the larger network. Note that while these methods do affect
each other, performing algebraic optimisations can potentially hurt
parallelism [31], as these are not mutually exclusive. In fact, these
methods can also complement each other and most works listed
in this study do not just utilise model parallelism, but attempt to
combine it with other techniques [28, 21, 29, 23, 8, 31, 13].

A neural network can contain a number of dimensions along
which it can be parallelised. For instance, the convolution operator
in a CNN often has a number channels which can all be processed in
parallel. A model parallelisation strategy then is a mapping from an
operator graph to a certain target distributed device (ideally) taking
advantage of parallelisable dimensions. Note that due to their par-
allel nature, it is possible to assign multiple devices to computing
a single operator o;. Accordingly, model parallelism encompasses
the strategies that utilise parallelisable dimensions within O, while
data parallelism are those strategies that utilise parallelisable di-
mensions in the data. Exactly which parallelisable dimensions are
present in any given O varies greatly and discovering them is a
major focus of model parallelism research.

3.2 Types of model parallelism

We present two ways to categorise model parallelism: by the par-
allelism being exploited with the choice of parallelisation strategy
and by the approach employed for finding a specific strategy. In this
regard, one can either parallelise over multiple nodes in O, known
as inter-operator parallelism, or parallelise the operation within an
operator node o;, known as intra-operator parallelism [16].
Inter-operator parallelism essentially comes down to partitioning
O into sub-graphs and assigning every sub-graph to a device. This
technique has relatively low communication requirements as we
only need to communicate with any other device at the edge of the
sub-graph. The parallelisation strategies found in intra-operator
parallelism are highly specific to the operator. Again, these two
approaches are not mutually exclusive and often are combined into
what some call hybrid-parallelism [16]. [28] for example comes up
with an intra-operator parallelisation strategy, specifically designed
for parallelising a Transformer block. We will explore the reasons
behind this approach when we elaborate the challenges of model
parallelism in Section 4. Figure 5 depicts how an inter-operator
strategy would look like when applied to a Transformer layer

| Model Parallelism

F. Brakel et al.

Parallelism

| Data Parallelism |

| Operator Graph | | Intra-Operator | | Inter-Operator | | Implementation |

7

—

| Operator | | Tensor |

Strategy | Target Hardware | | Target Model |

|Ad—hoc| | Auto-Parallelisation |

Figure 3: Taxonomy of model parallelism for neural networks. In this survey, we distinguish data parallelism from model
parallelism, which both fall under parallelism in neural networks.

——e e e e e e .- - ---—---——

Previous Subsequent
layers layers
N - - - - ——— e’
(a) Neuron representation
11
%k 12
W11l W12 01
W21 W22 02
()
W31 W32 03
(c) Operator graph representa-

(b) Tensor representation tion

Figure 4: Three representations of a fully connected layer.
The schematic representation highlights the connections
between the neurons, the tensor representation shows the
mathematical operation implementing the layer, and the
operator graph shows the data-flow through the network.

Whether to use inter-operator, intra-operator, or a combination
of the two, and how exactly to partition a given model using these
techniques, depends on many factors, e.g., model architecture and
device network topology. Finding the right combination is a major
focus of many papers and the approaches taken to achieve an
effective strategy is another aspect in which we categorise model
parallelism. On the one hand we find ad hoc approaches that are
specific to a certain model and/or device. On the other hand, we

find general approaches that work over a variety of models and
devices. Ad hoc approaches make use of the target hardware and
model architecture being known a priori. An example specifically
targeting both Transformer architectures and a hardware with eight
A100 GPUs, connected by NVLink, is [28]. Another set of examples
are papers sponsored by Google, all being specifically designed for
Google’s TPU pods [23, 8]. In this context, we notice intra-operator
and inter-operator parallelism with a slightly different terminology,
i.e., tensor parallelism and pipeline parallelism, respectively.

As mentioned, there are approaches that try to generalise the
problem and provide methods for coming up with a strategy for
any O on any distributed device. Some methods require the user to
specify the strategy [11, 27], while others are fully automated [13].

4 CHALLENGES

Considering what stated so far and based on our covered literature,
major challenges affecting auto-parallelisation are listed below.

Inter-operator parallelism. Inter-operator parallelism suffers from
low device utilisation if the implementation does not make use of
pipelining. After all, the input of each partition is the output of a pre-
vious one and processing can only start once this previous partition
has produced said output. In addition to the complexities imposed
by a pipeline, which is beyond the scope of this survey, pipelines en-
counter frequent stalls, i.e., bubbles, during training [11] (Figure 5c).
Due to the data-dependency between backward and forward passes,
the former can’t be started until the latter is completed.

Intra-operator parallelism. Intra-operator parallelism’s challenge
is in its extreme communication requirements. The input tensor to
the parallelised operator needs to be scattered over the devices and
the output then needs to be gathered for every batch.

Combining parallelism types. As it is concluded in [29], every
form of parallelism, including data parallelism, has its own limita-
tions and many implementations end up using hybrid strategies.
Such a strategy can be seen in Tables 2 and 3. Jia et al. [13] note that
available deep learning frameworks are often simple and suboptimal

Model Parallelism on Distributed Infrastructure: A Literature Review

~
Y
MLP
o
o
| o
Attention
-
Attention
D1)

X

(b) Inter-operator parallelisa-
tion of the Transformer layer.
The Transformer layer is par-
titioned over three devices D1,
D2 and D3.

Y

X

(a) Operator graph of a Trans-
former layer.

Forward Backward
b3 x| v Dﬂ
bz X | Y Dﬂ
1| X Y b1
|

(c) Pipeline view of the inter-operator parallelisation scheme, time
progresses from left to right. The input tensor X flows through
the partitions on the devices (D1-D3) during the forward pass. The
backward pass goes in the opposite direction and depends on the
forward pass for its input.

Y

Forward Backward
b3 X/ X[Y|Y D%
bz x|x| | |v|y Dﬂ
‘Dl X| X Y|Y Dl‘
I

(d) Micro-batches decrease the size of the pipeline bubble. A micro-
batch can be sent to the next partition earlier than a full batch,
allowing the pipeline to fill up faster, reducing the size of the bubble.

Figure 5: Example of a possible inter-operator parallelisation
strategy for a Transformer layer and the way an activation
tensor flows through it.

when it comes to parallelising models. This makes exploring differ-
ent hybrid strategies a significant challenge. General parallelism
approaches attempt to solve this either in the form of fully auto-
mated auto-parallelisation frameworks (Table 3), or by providing a

more high-level programming model, simplifying the expression of
the intended parallelisation strategy [34, 11].

Auto-parallelisation generally is expressed as a search problem,
bringing along the usual challenges attached to search problems.
We will now briefly list these as they pertain to model parallelism.

Search-space. The search space in DNN auto-parallelisation is
the set of strategies that can be evaluated. A good definition allows
for strategies to exploit a large amount of parallelisable dimensions,
while excluding illegal and/or suboptimal strategies.

Strategy evaluation. Given the need to quickly traverse the search-
space, fully profiling every parallelisation strategy is not compu-
tationally feasible, which is why the performance of the strategy
must be estimated in some way. While compute and memory are
relatively easy to predict [12, 13], modelling communication time
based on the network latency and bandwidth of whatever cluster
medium is being used, is currently a major open challenge.

Search method. Finding optimal methods for traversing the search-
space is a challenge in itself and the approaches taken in the context
of model parallelism have scattered in many directions, as it can be
seen later in Table 3.

5 USE-CASES

It is generally known that a model’s accuracy improves as it get
bigger and trains over more data. Interestingly, it is shown that
large-scale Transformers for natural language processing tasks,
colloquially known as Large Language Models (LLMs), show excep-
tional performance in few-shot learning applications [4]. Since the
release of GPT-3, followed by the availability of GPT-3.5 and GPT-4
to masses in the form of ChatGPT, the technology industry has, at
the time of this writing, seen a renewed effort to scale up models.
This makes LLMs a prominent use-case for model parallelism as
these models have now scaled well beyond the capabilities of a
single device, both in terms of memory and compute. The details
of our selected use-case models are listed in Table 2.

Methods in this section are all expert designs and highly specific
to the Transformer architecture. As a case-study however, these do
provide valuable insights into the challenges of model parallelism.
First, we will recap an important building block of neural networks,
i.e., Multi-Layer Perceptron (MLP). The MLP consists of four op-
erators. A fully connected layer, followed by a GeLU() activation
function, followed by another fully connected layer, followed by a
Dropout () function. The Dropout() is only used during training
and we will skip it here. More formally, we could note an MLP as,

Z = MLP4 (X)),
=GeLU(X - A) - B.
Where A and B are the weight matrices of the fully connected layers.

This is represented visually as an operator graph in Figure 6a, along-
side different intra-operator strategies applied to MLPs Figure 6.

5.1 Megatron

Shoeybi et al. [28] present a technique to partition large Trans-
former models over multiple GPUs. They demonstrate their ap-
proach by training two 8.3B parameter (GPT-2) and 3.9B parameter

F. Brakel et al.

Table 2: Model size, parallelism type and hardware utilisation achieved for ad hoc approaches when scaling up Transformer
models. Though [2, 4, 22] do not provide implementation detail of their model architectures, they are included for completeness.

‘ Parallelism
Model family | Paper Largest model Training hardware Intra- Inter- Data Utilisation
(# parameters) operator operator
[28] 8.3B 32X16 V100s 8 1 64 <30% (hardware)
Megatron [21] 1T 8x384 A100s 8 64 6 (presumed) 52% (hardware)
& [29] 530B 8x420 A100s 8 35 12 36.2% (hardware)
[14] 1T 8x64 A100s 8 64 1 56.3% (model)
[23] 280B 4x1024 TPUv3s >1 4 >1 n/a
Gopher/PaLM | [8] 540B 2x3072 TPUv4s 12 1 2%256 46.2% (model)
[2] <540B n/a TPUv4s n/a n/a n/a n/a
[4] 175B n/a V100s n/a n/a n/a n/a
GPT
[22] n/a n/a n/a n/a n/a n/a

(BERT) models on up to eight GPUs. This was implemented using a
form of intra-layer parallelism where the two building blocks of the
Transformer model, the MLP and the self-attention, are distributed
over multiple GPUs.

Two approaches are considered for the MLP, splitting the weights
over the columns or over the rows. These approaches are visually
depicted in Figures 6b and 6c. If we were to distribute A over the
rows, we get

X = [Xl,Xz] and

This would mean that we calculate GeLU() as,
Y = GeLU(X1A1 + XoA5),
and because GeLU() by design is non-linear,
GeLU(X1A1 + X2A2) # GeLU(X1A1) + GeLU(X2Az),

which means X1 A; + X2A2 needs to be calculated before we are
able to calculate GeLU(). Accordingly, such a calculation requires
the sending of either X1A; or X3A, over the network.

Conversely distributing A over the columns as,

A=[AAz],
allows the calculation of GeLU() as,
GeLU(XA) = [GeLU(X A1), GeLU(XAy)].
The next step is to distribute B over the rows as,
Z = Dropout(GeLU(X A1) - By + GeLU(XA3) - By),

eliminating the need to reconstruct GeLU(XA) altogether. Naturally,
this was the approach that the authors have opted to use.

Since the self-attention block of the Transformer has a lot of
inherent parallelism, the Q, K, and V matrices are simply distributed
over the columns. To demonstrate their approach, the authors have
trained an 8.9B GPT-2 Transformer model on eight GPUs with 77%
performance scaling in terms of throughput.

Narayanan et al. [21], build on the 8-way intra-layer parallelism
technique from [28] and combine it with up to 64-way inter-layer

parallelism using an approach similar to [20], in order to fit up to
a 1T parameter model on A100 GPUs. With the addition of data
parallelism, the authors manage to achieve 52% hardware utilisa-
tion for the largest model. Additionally, they analyse combining
parallelism techniques using an analytical model and provide three
key takeaways:

e When considering different forms of model parallelism, tensor
(intra-layer) model parallelism should generally be used up to
degree g when using g-GPU servers, and then pipeline (inter-
layer) model parallelism can be used to scale up larger models
across servers.

e The optimal microbatch size b, depends on the throughput
and memory footprint characteristics of the model, as well as
the pipeline depth p, data-parallel size d, and batch size B.

e When using data and model parallelism, a total model-parallel
size of M =t - p should be used so that the model’s param-
eters and intermediate metadata fit in GPU memory. Data
parallelism can be used to scale up training to more GPUs.

Smith et al’s paper [29] is a combined effort from NVIDIA and
Microsoft to train a large language model by combining the former’s
Megatron framework with the latter’s DeepSpeed framework. The
authors utilise data, inter-layer, and intra-layer parallelisms to train
up to a 540B parameter model on 420 DGX A100 servers containing
eight A100s each.

We also have the research from Korthikanti et al. [14], which
details fitting a 1T parameter model. The main focus of this paper
is reducing activation memory and increasing parallelism through
two new parallelisation schemes. The activation memory is defined
as the memory that is required to store the tensor created during the
forward pass of the training algorithm. This does not include the
model parameters. For an input tensor X € R® "bh | where s is the
sequence length, b is the micro-batch size, h is the hidden dimension
size and a being the number of attention heads, the attention block
has an activation memory footprint of 11s - b - h + 5a - s> - b Bytes.
The MLP block and the layer-norm have footprints of 19s - b - h
and 4s - b - h Bytes, respectively. Accordingly, the total activation

Model Parallelism on Distributed Infrastructure: A Literature Review

(b) Intra-Operator parallelisation by splitting A along the columns.

In this case, no communication is needed within the operator.
;)

D2

(c) Intra-Operator parallelisation by splitting A along the rows. Since
the GeLU operator is non-linear, the activation tensors have to be
gathered and scattered first.

Figure 6: The operator graph of the Multi-Layer Perceptron
(MLP) and the two intra-operator strategies for it [28].

memory footprint for a single layer in a Transformer model then is
s-b-h(34+ saT'S).

The tensor parallelism from the previous approach is used again
as it is computationally efficient. Parts of the layer that are com-
putationally most expensive are parallelised. It also parallelises
the activations within these blocks, meaning that the per device
memory footprint can be expressed as,

24 a-s
-b-h(10+ — +5—).
s (+t+ ht)

It does not however parallelise the Dropout or layer-norms. Hence,
even when lim;_, o, the activation memory footprint is still 10s-b-h.
The researchers note that the Dropout and layer-norm operations
are independent along the sequence dimension and partition the
activation tensor accordingly. They name this approach sequence

parallelism. Now, the per-device memory footprint of a layer is
expressed by,
s-b-h
t

(34+5%).

Lastly, pipeline parallelism is introduced. The concept of pipeline
parallelism has been discussed before, however, it does have an
implication on the activation memory footprint. For the first-stage,
the memory footprint is,

b-h-L .
s:b-h-L (34+s%),

where L is the number of layers in the network. For subsequent
stages, memory requirements are slightly different. Although not
the entire footprint is captured by this equation, it does so for the
overwhelming majority and for simplicity sake, the authors use
this equation to reason about their implementation. To show the
effectiveness of their approach, four Transformer models are trained
ranging from 22B to 1T parameters on 8 and 512 GPUs, respectively.
The authors manage to achieve 41.5% hardware utilisation for the
smallest model and 56.3% for the largest model, without the use of
any data parallelism.

5.2 Gopher

Rae et al’s work [23] is an effort by Google to train a large language
model. Their approach differs in that the hardware and software
are custom. The authors use TPU hardware and custom JAX soft-
ware framework. The largest Gopher model uses 4-way inter-layer
parallelism over four TPU pods, as well as an unreported level of
intra-layer parallelism and data parallelism within a 1024 chip pod,
in order to train a model with up to 280B parameters.

5.3 PalM

Chowdhery et al’s work [8] is another effort by Google to train a
large language model on Google TPUs. The authors train a model
with up to 540B parameters using two TPUv4 pods, consisting of
3072 chips each. Notable here is that the authors do not use any
inter-layer parallelism, thereby avoiding the pipeline bubble prob-
lem during training. They use up to 12-way intra-layer parallelism
and 256-way data parallelism within a single pod and another 2-
way data parallelism to scale up to two pods. In terms of software,
the authors use their own Pathways framework [3], which is built
on top of JAX.

The paper [2] details the next version of the PaLM model, i.e.,
PaLM 2. Unfortunately Google has opted not to share any detail
about this model’s underlying compute infrastructure. We only
include it here for completeness sake.

54 GPT

While model parallelism is certainly employed by OpenAl for their
GPT-3 model, for both training and inference, the employed V100
GPUs [4] lack the memory to store the model in its entirety. We
can simply list these here for completeness sake, as OpenAlI has
opted not to share any detail about their training infrastructure.
Similarly, no detail about the next-generation GPT-4 [22] model,
nor the infrastructure behind the model have been released.

6 DISCUSSION

As mentioned in Section 4, the communication costs of intra-operator
parallelism is so high that it is only possible to achieve it with the use
of high-speed interconnects. Within the Megatron family, the same
8-way intra-operator parallelism for Transformer layers by [21] is
used, a deep dive of which is provided in Section 3.2. This approach
relies on NVLink interconnects between the devices, limiting it
to a single compute node. For the Gopher/PaLM family however,
different hardware is employed, making it possible to apply up to
12-way intra-operator parallelism [8]. These clusters are specifi-
cally designed for neural network workloads and have very high
speed interconnects.

As discussed in Section 4, [20] mitigates the pipeline bubble
by keeping multiple batches in-flight and scheduling them asyn-
chronously. Alternatively, [11] takes a different approach, noting
that there is parallelism within a batch. The authors subdivide
batches into micro-batches, which can be pipelined much more
efficiently, as depicted in Figure 5d.

Considering Table 2, while implementations within a family
share details such as hardware and model architecture, different ad
hoc approaches have very few similarities, making them hard to
compare. To address this limitation, the use of the Model FLOPs
Utilisation (MFU) metric over Hardware FLOPs Utilisation (HFU)
is proposed in [8]. This metric takes into account that frequently
employed techniques such as remetarialisation are used to trade
off memory usage with compute. This creates a scenario where
using additional hardware FLOPs can save memory, increasing
HFU, without having an actual impact on the overall throughput
of the system. MFU is based on the actual throughput of the sys-
tem (tokens per second in the case of Transformers) compared to
the theoretical maximum of the system. This has been picked up
on by the latest Megatron paper [14]. However, Google’s authors
in their next paper [2], do not report anything about hardware
configuration, let alone the MFU they are able to achieve.

As is noted in [29], none of the three forms of parallelism in
neural networks can address all the challenges in training billion
parameter models and indeed, we see in Table 2 that of the papers in
the Megatron family, at least two forms of parallelism is considered.
The two papers that use the most GPUs by far, both employ all three
forms. Similarly, while considering their proprietary TPU hardware,
Google manages to avoid using inter-layer parallelism entirely for
PaLM and only uses 4-way for Gopher. They still heavily rely on
data parallelism in order to maintain throughput while scaling to
thousands of TPUs.

Zheng et al. [35] provide a comparison between ad hoc and
general strategies, comparing the approach with Megatron-LM [21]
and DeepSpeed [24]. Their Alpa is able to match the former and
outperform the latter. We must note the absence of any comparison
between Alpa, FlexFlow [13] and Tofu [33]. This is due to the fact
that at the time of their publication, FlexFlow did not support the
required operators and Tofu had not released their source code.

Thus, while Table 3 offers a comparison of listed frameworks, the
lack of standardised testing means that it is very hard to draw any
conclusions about how the different approaches actually compare
on specific metrics. Search methods especially have scattered into

F. Brakel et al.

all directions and it is almost impossible to discern which one is
better, since the search-space is defined differently for every case.

As discussed, comparing papers from DNN auto-parallelisation
quantitatively poses its challenges. Alternatively, we turn to a qual-
itative analysis of the papers found in this table. Tanaka et al. [30]
employ dynamic programming to automatically partition any model
formatted in the PyTorch model specification into a number of sub-
graphs. These subgraphs are load-balanced under the constraint of
the available memory on the devices at hand. Eliad et al. [9] consider
automatic inter-layer parallelism to create a framework to fine-tune
models for commodity hardware. They extend the strategy-space
of PipeDream by allowing non-adjacent layers to be scheduled onto
the same GPU. This means that pipeline stages can be made smaller,
allowing for more fine-grained load-balancing at the expense of in-
creased communication overhead. The authors use four competing
search methods to explore the new strategy-space. Three existing
methods are considered (as listed below), as well as one new search
algorithm, specifically tailored to their search-space.

e PipeDream [20]: Exhaustive search
e Acyclic [19, 18]: Greedy search
e Metis [25]: General graph partitioning scheme

These strategies are evaluated by profiling every operator in the
graph in isolation and utilising this data to calibrate a cost model.
Compared to PipeDream’s partitioning scheme, FTPipe Mixed-pipe
is able to fit a 3B parameter model on eight RTX 2080-Ti GPUs
with 11GB of memory each, connected over a PCI-e 3.0 bus. The
PipeDream partitioning scheme did not yield a valid parallelisation
strategy on this setup.

Zheng et al. [35] motivate their hierarchical search-space by
noting that “intra-layer and inter-layer parallelism take place at
different granularities of the DL computation and have distinct
communication requirements, which happen to match the structure
of today’s compute clusters”. The structure they refer to is a mesh
network. The search space is formulated as a two-level hierarchy in
order to express both inter- and intra-layer parallelism strategies.
The lowest level of the hierarchy Alpa takes an operator graph, a
device mesh and chooses an intra-layer strategy for every node
in the graph, such that the total execution cost of the graph is
minimised. It formulates this as an integer linear programming
problem and consider an off-the-shelf-solver, able to efficiently
solve for graphs consisting of thousands of operators. The second
level consists of finding an optimal partitioning of the operator
graph and mapping this to a sub-mesh of the compute cluster. The
search method used here is a dynamic programming algorithm that
takes as reward the predicted performance of a stage-mesh pair,
optimised by the lower level.

Jia et al’s work [13] details an entirely new framework built
from the ground up for auto-parallelisation. This framework, called
FlexFlow, introduces itself with a deep learning engine that uses
a comprehensive search-space of parallelisation strategies, called
SOAP. The SOAP search-space consists of four parallelisable di-
mensions: Sample, Operator, Attribute, and Parameter. We had
mentioned the concept of parallelisable dimensions in Section 3.1.

o Sample dimension describes the amount of data samples.
e Parameter dimension is defined as requiring the splitting of
model parameters. We know this as intra-layer parallelism.

Model Parallelism on Distributed Infrastructure: A Literature Review

Table 3: Overview of parallelisation frameworks, automatic and manual.

‘ Parallelism
Mode ‘ Framework/Paper(s) Intra-operator Inter-operator Search method Strategy evaluation

RaNNC [30] - v Dynamic programming Profiling operators
FTPipe [9] - v Multi-processor scheduling Profiling operators

Automatic Alpa [35] v v Dynamic programming Profiling-calibrated model
FlexFlow [13, 31] v v Markov chain Monte Carlo Calibrated simulation
TensorOpt [5] v - Frontier tracking Profiling-calibrated model
Double recursive [32] v - Double recursive Symbolic model
GPipe [11] - v - -

Manual PipeDream [10, 20] v - -
GSPMD [34] v - - -

o Attribute dimension does not require the splitting of model
parameters. This essentially is a catch-all dimension when
there are additional ways to parallelise an operator.

e Operator dimension which represents operators wholly.

As already alluded to by the description of the attribute dimen-
sion, not every dimension exists for every operator’s output tensor.
Some dimensions may have multiple axes along which parallelisa-
tion could occur. As such, the full SOAP search-space consists of
the set #, comprising of ordered sets of parallelisable dimensions,
P;, which are mapped to the elements of O in an injective manner.
The search-space # can be formulated as

P ={f(0i)IVoi,0j € O,0i =0j = f(0i) = f(0j)}.

Accordingly, a strategy S in FlexFlow is defined as a set of posi-
tive integer tuples, c;, such that

S = {ci|VP; € P,c; € Z| i1}

Here, c¢; describes the degree of parallelism for each of the paral-
lelisable dimensions present in P;, resulting in a number of indepen-
dent tasks equal to the product of the tuple’s elements. While other
works classify FlexFlow’s search-space as containing intra-layer
parallelism only [16], arguing it does not support pipeline paral-
lelism, we do include inter-layer parallelism. FlexFlow is capable
of organising operators from the operator graph into subgraphs
and assigning these to different devices. To evaluate parallelisation
strategies found in the search-space, FlexFlow utilises an execution
simulator, taking as input,

e adevice graph,
e an operator graph, and
e a parallelisation strategy.

The first step is to construct a task graph, 7, from the three
inputs. In the task graph, nodes represent tasks as defined by the
strategy, while edges represent a dependency between two tasks.
One important detail to note is that unlike the operator graph, edges
here do not represent the flow of data, but just the partial ordering
of the task set. The simulator uses a combination of profiling tasks
on target devices, estimating communication overhead from the
size of the tensors and the characteristics of the device connections.
This process provides an estimate for the total execution time of
the task graph. As the search method, FlexFlow employs a Markov

Chain Monte Carlo search algorithm, i.e., randomly sampling both
operators and strategies, followed by evaluation using the simula-
tor described above. FlexFlow is directly compatible with models
specified in PyTorch format, but also includes front-ends for both
ONNX and TensorFlow Keras support.

Cai et al. [5] optimise for both memory consumption and ex-
ecution time, providing a Pareto-optimal frontier of intra-layer
parallelisation strategies. The search strategy uses linear dynamic
programming, but a few steps are required to get there, as it re-
quires the strategy to be formulated as a linear function. Wang et
al. [32] provide a different search method, focusing on finding a
strategy with minimal processing time. Unlike TensorOpt, it does
not consider memory usage, optimising just for execution time.

7 CONCLUSION

Revisiting our research questions, we can conclude the following:

What types of model parallelism exist? There are two types of
model parallelism: intra-operator, which partitions within an oper-
ator, and inter-operator, which partitions over multiple operators.
Often, these types are combined into what is referred to as hybrid
parallelism, which can also include data-parallelism.

What are the challenges of model parallelism? Challenges include
technical trade-offs of the different kinds of model parallelism, with
intra-operator having extremely high communication requirements
and inter-operator suffering from low device utilisation during
training. Finding the optimal parallelisation strategy in hybrid par-
allelism is another major challenge as the operator-graph and the
device-graph most likely will not adequately map onto each other.

What is a modern use-case of model parallelism? Model paral-
lelism is currently widely used to train and run inference of multi-
billion Transformer models. We find that models from the Mega-
tron family, running on V100 and A100 chips, use intra-operator
parallelism within a single compute node and a combination of
inter-operator and data parallelism to scale beyond a single node.
The PaLM model is able to address the communication challenge
of intra-operator parallelism with specialised hardware and does
not use any inter-operator parallelism.

Future work. The field of DNN auto-parallelisation could sig-
nificantly benefit from standardisation. As discussed in Section 6,
approaches are often so different that it is impossible to account
an advancement in the state-of-the-art to any specific part of the
approach. This is in part due to the nature of search problems. How-
ever, standardised representations for strategy, device, and model,
would help in this regard. For an example of the benefits such
standardisation would provide, we can look at other disciplines
that deal with search problems,w specifically Neural Architecture
Search (NAS). NAS also deals with neural networks and one idea
DNN auto-parallelisation could copy from NAS is to provide a data
set containing a fully explored search-space, similar to (HW-)NAS-
Bench [17, 15]. This would allow methods to be compared without
necessitating access to expensive hardware, opening up the field to
more people.

REFERENCES

(1]

[10]

[11]

[12]

[13]

[14]

[15]

Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi
Mao, and Mohammad Alizadeh. 2019. Placeto: learning generalizable device
placement algorithms for distributed machine learning. (2019). por: 10.48550/a
rXiv.1906.08879.

Rohan Anil et al. 2023. Palm 2 technical report. (2023). por: 10.48550/arXiv.230
5.10403.

Paul Barham et al. 2022. Pathways: asynchronous distributed dataflow for ml.
In Proceedings of Machine Learning and Systems.

Tom Brown et al. 2020. Language models are few-shot learners. In Advances in
Neural Information Processing Systems.

Zhenkun Cai, Xiao Yan, Kaihao Ma, Yidi Wu, Yuzhen Huang, James Cheng,
Teng Su, and Fan Yu. 2022. Tensoropt: exploring the tradeoffs in distributed
dnn training with auto-parallelism. por: 10.1109/TPDS.2021.3132413.

Tiangi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training
deep nets with sublinear memory cost. (2016). por: 10.48550/arXiv.1604.06174.
Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny
Krashinsky. 2021. Nvidia a100 tensor core gpu: performance and innovation.
por: 10.1109/MM.2021.3061394.

Aakanksha Chowdhery et al. 2023. Palm: scaling language modeling with
pathways.

Saar Eliad, Ido Hakimi, Alon De Jagger, Mark Silberstein, and Assaf Schuster.
2021. Fine-tuning giant neural networks on commodity hardware with auto-
matic pipeline model parallelism. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21).

Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri, Nikhil
Devanur, Greg Ganger, and Phil Gibbons. 2018. Pipedream: fast and efficient
pipeline parallel dnn training. (2018). por: 10.48550/arXiv.1806.03377.
Yanping Huang et al. 2019. Gpipe: efficient training of giant neural networks
using pipeline parallelism. In Advances in Neural Information Processing Sys-
tems.

Zhihao Jia, Sina Lin, Charles R. Qi, and Alex Aiken. 2018. Exploring hidden
dimensions in accelerating convolutional neural networks. In Proceedings of
the 35th International Conference on Machine Learning.

Zhihao Jia, Matei Zaharia, and Alex Aiken. 2019. Beyond data and model
parallelism for deep neural networks. In Proceedings of Machine Learning and
Systems.

Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee,
Michael Andersch, Mohammad Shoeybi, and Bryan Catanzaro. 2023. Reducing
activation recomputation in large transformer models.

Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You,
Qixuan Yu, Yue Wang, and Yingyan Lin. 2021. Hw-nas-bench:hardware-aware
neural architecture search benchmark. (2021). por: 10.48550/arXiv.2103.10584.

[16]

[17]

[21]

[22]
(23]

[24]

[27]

(28]

(31]

(32]

(34]

(35]

F. Brakel et al.

Peng Liang, Yu Tang, Xiaoda Zhang, Youhui Bai, Teng Su, Zhiquan Lai, Linbo
Qiao, and Dongsheng Li. 2023. A survey on auto-parallelism of large-scale
deep learning training. por: 10.1109/TPDS.2023.3281931.

Yash Mehta, Colin White, Arber Zela, Arjun Krishnakumar, Guri Zabergja,
Shakiba Moradian, Mahmoud Safari, Kaicheng Yu, and Frank Hutter. 2022.
Nas-bench-suite: nas evaluation is (now) surprisingly easy. (2022). por: 10.485
50/arXiv.2201.13396.

Orlando Moreira, Merten Popp, and Christian Schulz. 2018. Evolutionary multi-
level acyclic graph partitioning. In Proceedings of the Genetic and Evolutionary
Computation Conference. pol: 10.1145/3205455.3205464.

Orlando Moreira, Merten Popp, and Christian Schulz. 2017. Graph partitioning

with acyclicity constraints. (2017). por: 10.48550/arXiv.1704.00705.
Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil

R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. 2019.
Pipedream: generalized pipeline parallelism for dnn training. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles. po1: 10.1145/334130
1.3359646.

Deepak Narayanan et al. 2021. Efficient large-scale language model training on
gpu clusters using megatron-lm. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. por: 10.114
5/3458817.3476209.

OpenAl et al. 2023. Gpt-4 technical report. (2023). por: 10.48550/arXiv.2303.08
774.

Jack W. Rae et al. 2022. Scaling language models: methods, analysis & insights
from training gopher. (2022). por: 10.48550/arXiv.2112.11446.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020.
Deepspeed: system optimizations enable training deep learning models with
over 100 billion parameters. In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining. poI: 10.1145/3394486
.3406703.

Kirk Schloegel, George Karypis, and Vipin Kumar. 2002. Parallel static and
dynamic multi-constraint graph partitioning. Concurrency and Computation:
Practice and Experience. pol: 10.1002/cpe.605.

Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius Hobbhahn,
and Pablo Villalobos. 2022. Compute trends across three eras of machine learn-
ing. In 2022 International Joint Conference on Neural Networks (IJCNN). por:
10.1109/IJCNN55064.2022.9891914.

Noam Shazeer et al. 2018. Mesh-tensorflow: deep learning for supercomputers.
In Advances in Neural Information Processing Systems.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared
Casper, and Bryan Catanzaro. 2020. Megatron-lm: training multi-billion pa-
rameter language models using model parallelism. (2020). por: 10.48550/arXiv
.1909.08053.

Shaden Smith et al. 2022. Using deepspeed and megatron to train megatron-
turing nlg 530b, a large-scale generative language model. (2022). por: 10.48550
/arXiv.2201.11990.

Masahiro Tanaka, Kenjiro Taura, Toshihiro Hanawa, and Kentaro Torisawa.
2021. Automatic graph partitioning for very large-scale deep learning. In 2021
IEEE International Parallel and Distributed Processing Symposium (IPDPS). por:
10.1109/IPDPS49936.2021.00109.

Colin Unger et al. 2022. Unity: accelerating DNN training through joint op-
timization of algebraic transformations and parallelization. In 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 22).
Haoran Wang, Chong Li, Thibaut Tachon, Hongxing Wang, Sheng Yang,
Sébastien Limet, and Sophie Robert. 2021. Efficient and systematic partitioning
of large and deep neural networks for parallelization. In Euro-Par 2021: Parallel
Processing. por: 10.1007/978-3-030-85665-6_13.

Minjie Wang, Chien-chin Huang, and Jinyang Li. 2019. Supporting very large
models using automatic dataflow graph partitioning. In Proceedings of the
Fourteenth EuroSys Conference 2019. po1: 10.1145/3302424.3303953.
Yuanzhong Xu et al. 2021. Gspmd: general and scalable parallelization for ml
computation graphs. (2021). por1: 10.48550/arXiv.2105.04663.

Lianmin Zheng et al. 2022. Alpa: automating inter- and Intra-Operator paral-
lelism for distributed deep learning. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22).

https://doi.org/10.48550/arXiv.1906.08879
https://doi.org/10.48550/arXiv.1906.08879
https://doi.org/10.48550/arXiv.2305.10403
https://doi.org/10.48550/arXiv.2305.10403
https://doi.org/10.1109/TPDS.2021.3132413
https://doi.org/10.48550/arXiv.1604.06174
https://doi.org/10.1109/MM.2021.3061394
https://doi.org/10.48550/arXiv.1806.03377
https://doi.org/10.48550/arXiv.2103.10584
https://doi.org/10.1109/TPDS.2023.3281931
https://doi.org/10.48550/arXiv.2201.13396
https://doi.org/10.48550/arXiv.2201.13396
https://doi.org/10.1145/3205455.3205464
https://doi.org/10.48550/arXiv.1704.00705
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2112.11446
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1002/cpe.605
https://doi.org/10.1109/IJCNN55064.2022.9891914
https://doi.org/10.48550/arXiv.1909.08053
https://doi.org/10.48550/arXiv.1909.08053
https://doi.org/10.48550/arXiv.2201.11990
https://doi.org/10.48550/arXiv.2201.11990
https://doi.org/10.1109/IPDPS49936.2021.00109
https://doi.org/10.1007/978-3-030-85665-6_13
https://doi.org/10.1145/3302424.3303953
https://doi.org/10.48550/arXiv.2105.04663

	Abstract
	1 Introduction
	2 Study design
	3 Model parallelism
	3.1 Background
	3.2 Types of model parallelism

	4 Challenges
	5 Use-cases
	5.1 Megatron
	5.2 Gopher
	5.3 PaLM
	5.4 GPT

	6 Discussion
	7 Conclusion

