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ABSTRACT
Neural networks have become a cornerstone of machine learning.

As the trend for these to get more and more complex continues,

so does the underlying hardware and software infrastructure for

training and deployment. In this survey we answer three research

questions: “What types of model parallelism exist?”, “What are the
challenges of model parallelism?”, and “What is a modern use-case
of model parallelism?” We answer the first question by looking

at how neural networks can be parallelised and expressing these

as operator graphs while exploring the available dimensions. The

dimensions along which neural networks can be parallelised are

intra-operator and inter-operator. We answer the second question

by collecting and listing both implementation challenges for the

types of parallelism, as well as the problem of optimally partitioning

the operator graph. We answer the last question by collecting and

listing how parallelism is applied in modern multi-billion parameter

transformer networks, to the extend that this is possible with the

limited information shared about these networks.

KEYWORDS
Model parallelism, Auto-parallelism, Transformers, Distributed

deep learning

1 INTRODUCTION
Neural networks have become a cornerstone in machine learning,

offering solutions for complex prediction tasks. As these networks

grow in complexity, both computational requirements and memory

footprint for training and inference, increase proportionally.

The increase in computational requirements is due to the greater

number of operations needed to perform tasks like forward and

backward passes during training. More complex models often have

more layers, more neurons, or more sophisticated architectures,

all of which contribute to an increased number of mathematical

operations. Similarly, the memory footprint increases because more

complex models require more parameters, and each parameter

needs to be stored in memory. Additionally, intermediate values

generated during computation also consume memory, and their

number grows with the complexity of the model.

One way to continue meeting these computational demands is

through model parallelism: by partitioning the model the workload

can be spread out over multiple devices. However, the data-intensity

of neural network workloads makes this non-trivial. Both the pa-

rameters and the data flowing through the network are of consid-

erable size and when distributing the neural network over multiple

devices this data now has to be send over an interconnect such as a

high-speed NVLink bridge or a regular Ethernet connection.

Compared to fetching of data from memory, these interconnects

pose serious bandwidth limitations. Even when only considering a

single server, where devices can send data over NVLink, the band-

width is already a factor two below that of the A100’s DRAM [7].

Often however, we are trying to scale even beyond this to mul-

tiple nodes, where communication between nodes passes over a

comparably glacial network built on for example, Ethernet.

Model parallelism then has the potential tomeet the ever-growing

demands computational demands of neural networks. In this survey

we aim to provide a view on model parallelism by answering the

following questions:

(1) What types of model parallelism exist?
(2) What are the challenges of model parallelism?
(3) What is a modern use-case of model parallelism?

Outline. Section 2 defines the considered constraints in our study
design, followed by a detailed background on model parallelism in

Section 3. Section 4 covers the collected challenges, while Section 5

delves into the details of collected use-cases. Following relevant

discussions in Section 6, we conclude in Section 7 by revisiting our

initial research questions.

2 STUDY DESIGN
This study consists of two distinct phases. In order to provide a

theoretical framework for neural network workloads and to tackle

the first research question “What types of model parallelism exist?”,
the first phase consists of a study in Deep Neural Network (DNN)

auto-parallelisation. DNN auto-parallelisation formulates model

parallelism in a form suitable for search algorithms. The literature

collection process for this phase was done using a snowballing

approach, with the 2023 survey by [16] as seed. The available papers

were filtered according to the following criteria:

(1) Code state: Available - 22 papers left after filtering

(2) Code state: Actively maintained - 8 papers

(3) Neural network training type: Fully automated - 7 papers

(4) Compatibility with existing file formats - 6 papers

In order to answer the second and the third research questions,

the second phase consists of a study into how model parallelism
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is used in modern Transformer networks. This phase too was per-

formed following a snowballing approach. The seeds for the second

phase are the models from Figure 1 (taken from [29]) and Table 1

(taken from [8]).

Figure 1: Megatron-NLG compared to other large language
models (source: [29]).

Table 1: Comparison of different Transformer models
(source: [8]).

Model # Parameters Hardware Utilisation

GPT-3 175B V100 21.3%

Gopher 280B 4096 TPU v3 32.5%

Megatron-Turing 530B 2240 A100 30.2%

PaLM 540B 6144 TPUv4 46.2%

This phase resulted in the collection of four papers on the Mega-

tron family of models, one about Gopher, two about PaLM and two

about GPT, listed further ahead in Table 2. Sadly, details about the

implementations of these models, as it pertains to model parallelism,

are scarce. Thus, we filter the papers on the availability of these

details, after which, we are left with the mentioned four papers on

Megatron, the paper about Gopher and one paper about PaLM.

3 MODEL PARALLELISM
Model parallelism in neural networks is characterised by partition-

ing the model itself and distributing the partitions over multiple

compute devices. This approach offers potential benefits, both in

model throughput and in lowering per-device memory require-

ments. To further define what model parallelism is, we first offer a

framework for reasoning about neural networks from a computa-

tional perspective. We provide a background on model parallelism

as neural networks operating in the Single Instruction Multiple

Data (SIMD) form. Following that, we answer the first research

question, i.e., “What types of model parallelism exist?”, considering
theoretical and implementation-related perspectives.

3.1 Background
In machine learning we distinguish between two phases: training

and inference. At training-time we train a model on a set of data

called the learning set. At inference-time we task the trained model

with making predictions on new, unseen, data.

One of such models is a neural network and for complex predic-

tion tasks they dominate the state of the art. We will give a more

detailed explanation of a neural network in Section 3.1.2 but for

now a conceptual explanation will suffice.

Neural Networks (NNs) are, as the name suggests, made up of

artificial neurons. The neurons are organised in layers. Neurons in

a layer all perform the same operation on their input data and thus

these layers are also referred to as operators. Layers have weighted
connections between and it is by adjusting these weights during

training time that the NN is able to learn. These weights are referred
to as model’s parameters.

3.1.1 Scaling up networks. As the field of machine learning has

progressed models have become ever larger [26] and it is through

this lens that designing NNs presents an engineering challenge as

scaling up a NN has the following effects:

(1) A larger NN has more neurons performing operations and

thus requires more compute.

(2) A larger NN has more parameters and thus requires more

memory to store these.

(3) Having more training samples requires more passes and

thus more compute.

From this, it is clear that hardware limitations pose limitations for

scaling up NNs. In fact, model parallelism is actually amongst the

methods aimed at achieving continued progress when it comes to

scaling up NNs. An overview is depicted in Figure 2.

More layers
Wider layers
More training data

Layers don't fit in memory
Training requires more device-hours

Checkpointing
Model compression
Algebraic transformations

Data parallelism
Model parallelism

Hardware Limitations

Scaling up Neural Networks

Optimizations Parallelism

Figure 2: Overview of scaling up NNs within the NN compute
infrastructure.
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We also provide the overview of model parallelism in the form

of a taxonomy, Figure 3, generated from the frequent key-terms.

3.1.2 Neural network workloads. Compute Flow Graphs (CFGs) are

widely used to represent workloads. In keeping with [16, 13, 1], we

will be expressing a NN as a variant of a CFG called an operator
graph. In this graph, data is represented by tensors and computation

by operators.

The term tensor is one that comes up a lot in the context of ma-

chine learning. While in mathematics a tensor has a more rigorous

definition, in the context of NNs, tensors describe n-dimensional

arrays of data, flowing through the network. We will regularly

mention two named tensors: the input tensor X and the output ten-

sor Y. Additionally, we distinguish between parameter tensors and

activation tensors. Parameter tensors are static inputs to operators,

while activation tensors are the result of said operators. Operators

are the functional units of the NN. These represent a computation,

e.g., a matrix-multiplication or a convolution, performed on any

number of input tensors and resulting in a single output tensor.

Operators and tensors are organised into an operator graph.

In an operator graph O = (𝑉 , 𝐸) of a given NN, every node

𝑣𝑖 ∈ 𝑉 is either an operator 𝑜𝑖 , with an associated activation tensor

T𝑜𝑖 , or a tensor T𝑖 . Every edge 𝑒𝑖 𝑗 (𝑣𝑖 , 𝑜 𝑗 ) ∈ 𝐸 indicates the tensor

associated with 𝑣𝑖 , is an input to the operator node 𝑜 𝑗 . Consider

Figure 4 as a visual explanation. A fully connected layer in a NN

(Figure 4a) can be represented as an operation on two tensors, I
andW, resulting in a third tensor, O (Figure 4b). Figure 4c shows

how we represent operations on tensors as a graph.

Using this representation we define two workloads: the forward

pass and the backward pass. The forward pass takes the input tensor

X and computes all the activations, resulting in Y. The backward
pass updates parameters tensors using the back-propagation algo-

rithm. The exact workings for the back-propagation algorithm are

beyond the scope of this survey, but we will note the following

relevant characteristics:

• Starts at the output Y and works its way back to X, making it

dependent on the result of the forward pass.

• It requires the activation tensor of every operator to calculate

how it should update its parameters.

Training consists of𝑏 forward passes followed by𝑏 backward passes,

with 𝑏 as batch size. Inference only consists of forward passes.

3.1.3 Pushing the limits of hardware. Neural networks have reached
a scale, both in terms of compute and memory requirements, where

we are arriving at the limits of what current available hardware are

capable of. Consequently, there has been significant effort chan-

nelled into finding ways to push these limits. Checkpointing [6]

provides a memory-compute trade-off for the training process. Re-

call that during the backward pass we require the activation tensor

T𝑜𝑖 for every operator, which were computed during the forward

pass. Checkpointing trades some of the memory requirements for

storing this for compute by strategically storing only some of the

tensors and recomputing the rest from these checkpointed tensors.

Algebraic transformations [31] create an equivalent neural network

by merging and reordering operators, aiming at a reduction of both

computational complexity and memory footprint.

Both checkpointing and algebraic transformations fully preserve

the neural network, but it can also be beneficial to trade some

accuracy in representing the network in memory, in order to fit a

larger one. For example, using a lower precision data type, such as

a 16-bit float instead of a 32-bit float, hurts accuracy. However, the

memory saved by this change can be used to store more parameters,

which can in turn lead to a greater accuracy gains.

Another approach is to compress a large model into a smaller

one [23]. This method still requires the training of the larger model

variant and thus, contributes only to the inference speed. Prun-

ing is the process of removing unimportant neurons resulting in

a sparse network. Which neurons to remove while maintaining

model accuracy and how to effectively compute sparse neural net-

work workloads is an active area of research. Distillation is another

model compression technique where we try to use a large network

in order to train a smaller one, i.e., distil the knowledge present
in the larger network. Note that while these methods do affect

each other, performing algebraic optimisations can potentially hurt

parallelism [31], as these are not mutually exclusive. In fact, these

methods can also complement each other and most works listed

in this study do not just utilise model parallelism, but attempt to

combine it with other techniques [28, 21, 29, 23, 8, 31, 13].

A neural network can contain a number of dimensions along

which it can be parallelised. For instance, the convolution operator

in a CNN often has a number channels which can all be processed in

parallel. A model parallelisation strategy then is a mapping from an

operator graph to a certain target distributed device (ideally) taking

advantage of parallelisable dimensions. Note that due to their par-

allel nature, it is possible to assign multiple devices to computing

a single operator 𝑜𝑖 . Accordingly, model parallelism encompasses

the strategies that utilise parallelisable dimensions within O, while

data parallelism are those strategies that utilise parallelisable di-

mensions in the data. Exactly which parallelisable dimensions are

present in any given O varies greatly and discovering them is a

major focus of model parallelism research.

3.2 Types of model parallelism
We present two ways to categorise model parallelism: by the par-

allelism being exploited with the choice of parallelisation strategy

and by the approach employed for finding a specific strategy. In this

regard, one can either parallelise over multiple nodes in O, known

as inter-operator parallelism, or parallelise the operation within an

operator node 𝑜𝑖 , known as intra-operator parallelism [16].

Inter-operator parallelism essentially comes down to partitioning

O into sub-graphs and assigning every sub-graph to a device. This

technique has relatively low communication requirements as we

only need to communicate with any other device at the edge of the

sub-graph. The parallelisation strategies found in intra-operator

parallelism are highly specific to the operator. Again, these two

approaches are not mutually exclusive and often are combined into

what some call hybrid-parallelism [16]. [28] for example comes up

with an intra-operator parallelisation strategy, specifically designed

for parallelising a Transformer block. We will explore the reasons

behind this approach when we elaborate the challenges of model

parallelism in Section 4. Figure 5 depicts how an inter-operator

strategy would look like when applied to a Transformer layer
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Parallelism

Data ParallelismModel Parallelism

Intra-Operator Inter-OperatorOperator Graph

Operator Tensor

Implementation

Ad-hoc Auto-Parallelisation

Strategy Target Hardware Target Model

Figure 3: Taxonomy of model parallelism for neural networks. In this survey, we distinguish data parallelism from model
parallelism, which both fall under parallelism in neural networks.

I1

I2

O1

O2

O3

Previous 
layers

Subsequent 
layers

(a) Neuron representation

W11 W12

W21 W22

W31 W32

O1

O2

O3

I1

I2*

(b) Tensor representation

W

O*I

(c) Operator graph representa-
tion

Figure 4: Three representations of a fully connected layer.
The schematic representation highlights the connections
between the neurons, the tensor representation shows the
mathematical operation implementing the layer, and the
operator graph shows the data-flow through the network.

Whether to use inter-operator, intra-operator, or a combination

of the two, and how exactly to partition a given model using these

techniques, depends on many factors, e.g., model architecture and

device network topology. Finding the right combination is a major

focus of many papers and the approaches taken to achieve an

effective strategy is another aspect in which we categorise model

parallelism. On the one hand we find ad hoc approaches that are
specific to a certain model and/or device. On the other hand, we

find general approaches that work over a variety of models and

devices. Ad hoc approaches make use of the target hardware and

model architecture being known a priori. An example specifically

targeting both Transformer architectures and a hardware with eight

A100 GPUs, connected by NVLink, is [28]. Another set of examples

are papers sponsored by Google, all being specifically designed for

Google’s TPU pods [23, 8]. In this context, we notice intra-operator

and inter-operator parallelism with a slightly different terminology,

i.e., tensor parallelism and pipeline parallelism, respectively.

As mentioned, there are approaches that try to generalise the

problem and provide methods for coming up with a strategy for

any O on any distributed device. Some methods require the user to

specify the strategy [11, 27], while others are fully automated [13].

4 CHALLENGES
Considering what stated so far and based on our covered literature,

major challenges affecting auto-parallelisation are listed below.

Inter-operator parallelism. Inter-operator parallelism suffers from

low device utilisation if the implementation does not make use of

pipelining. After all, the input of each partition is the output of a pre-

vious one and processing can only start once this previous partition

has produced said output. In addition to the complexities imposed

by a pipeline, which is beyond the scope of this survey, pipelines en-

counter frequent stalls, i.e., bubbles, during training [11] (Figure 5c).
Due to the data-dependency between backward and forward passes,

the former can’t be started until the latter is completed.

Intra-operator parallelism. Intra-operator parallelism’s challenge

is in its extreme communication requirements. The input tensor to

the parallelised operator needs to be scattered over the devices and

the output then needs to be gathered for every batch.

Combining parallelism types. As it is concluded in [29], every

form of parallelism, including data parallelism, has its own limita-

tions and many implementations end up using hybrid strategies.

Such a strategy can be seen in Tables 2 and 3. Jia et al. [13] note that

available deep learning frameworks are often simple and suboptimal
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(a) Operator graph of a Trans-
former layer.

D3
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Layer Norm
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(b) Inter-operator parallelisa-
tion of the Transformer layer.
The Transformer layer is par-
titioned over three devices D1,
D2 and D3.

D1

D2

D3

D1

D2

D3

X

Y

Y
Forward Backward

X

X

Y

Y

(c) Pipeline view of the inter-operator parallelisation scheme, time
progresses from left to right. The input tensor X flows through
the partitions on the devices (D1-D3) during the forward pass. The
backward pass goes in the opposite direction and depends on the
forward pass for its input.

D1

D2

D3

D1

D2

D3

X

X

X Y Y

Y Y

Y Y

X

X

X

Y
Forward Backward

(d) Micro-batches decrease the size of the pipeline bubble. A micro-
batch can be sent to the next partition earlier than a full batch,
allowing the pipeline to fill up faster, reducing the size of the bubble.

Figure 5: Example of a possible inter-operator parallelisation
strategy for a Transformer layer and the way an activation
tensor flows through it.

when it comes to parallelising models. This makes exploring differ-

ent hybrid strategies a significant challenge. General parallelism

approaches attempt to solve this either in the form of fully auto-

mated auto-parallelisation frameworks (Table 3), or by providing a

more high-level programming model, simplifying the expression of

the intended parallelisation strategy [34, 11].

Auto-parallelisation generally is expressed as a search problem,

bringing along the usual challenges attached to search problems.

We will now briefly list these as they pertain to model parallelism.

Search-space. The search space in DNN auto-parallelisation is

the set of strategies that can be evaluated. A good definition allows

for strategies to exploit a large amount of parallelisable dimensions,

while excluding illegal and/or suboptimal strategies.

Strategy evaluation. Given the need to quickly traverse the search-
space, fully profiling every parallelisation strategy is not compu-

tationally feasible, which is why the performance of the strategy

must be estimated in some way. While compute and memory are

relatively easy to predict [12, 13], modelling communication time

based on the network latency and bandwidth of whatever cluster

medium is being used, is currently a major open challenge.

Searchmethod. Finding optimalmethods for traversing the search-

space is a challenge in itself and the approaches taken in the context

of model parallelism have scattered in many directions, as it can be

seen later in Table 3.

5 USE-CASES
It is generally known that a model’s accuracy improves as it get

bigger and trains over more data. Interestingly, it is shown that

large-scale Transformers for natural language processing tasks,

colloquially known as Large Language Models (LLMs), show excep-

tional performance in few-shot learning applications [4]. Since the

release of GPT-3, followed by the availability of GPT-3.5 and GPT-4

to masses in the form of ChatGPT, the technology industry has, at

the time of this writing, seen a renewed effort to scale up models.

This makes LLMs a prominent use-case for model parallelism as

these models have now scaled well beyond the capabilities of a

single device, both in terms of memory and compute. The details

of our selected use-case models are listed in Table 2.

Methods in this section are all expert designs and highly specific

to the Transformer architecture. As a case-study however, these do

provide valuable insights into the challenges of model parallelism.

First, we will recap an important building block of neural networks,

i.e., Multi-Layer Perceptron (MLP). The MLP consists of four op-

erators. A fully connected layer, followed by a GeLU() activation
function, followed by another fully connected layer, followed by a

Dropout() function. The Dropout() is only used during training

and we will skip it here. More formally, we could note an MLP as,

𝑍 = 𝑀𝐿𝑃𝐴,𝐵 (𝑋 ),
= GeLU(𝑋 · 𝐴) · 𝐵.

Where𝐴 and 𝐵 are the weight matrices of the fully connected layers.

This is represented visually as an operator graph in Figure 6a, along-

side different intra-operator strategies applied to MLPs Figure 6.

5.1 Megatron
Shoeybi et al. [28] present a technique to partition large Trans-

former models over multiple GPUs. They demonstrate their ap-

proach by training two 8.3B parameter (GPT-2) and 3.9B parameter
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Table 2: Model size, parallelism type and hardware utilisation achieved for ad hoc approaches when scaling up Transformer
models. Though [2, 4, 22] do not provide implementation detail of their model architectures, they are included for completeness.

Parallelism

Model family Paper Largest model
(# parameters) Training hardware Intra-

operator
Inter-

operator Data Utilisation

Megatron

[28] 8.3B 32×16 V100s 8 1 64 <30% (hardware)

[21] 1T 8×384 A100s 8 64 6 (presumed) 52% (hardware)

[29] 530B 8×420 A100s 8 35 12 36.2% (hardware)

[14] 1T 8×64 A100s 8 64 1 56.3% (model)

Gopher/PaLM

[23] 280B 4×1024 TPUv3s >1 4 >1 n/a

[8] 540B 2×3072 TPUv4s 12 1 2×256 46.2% (model)

[2] <540B n/a TPUv4s n/a n/a n/a n/a

GPT

[4] 175B n/a V100s n/a n/a n/a n/a

[22] n/a n/a n/a n/a n/a n/a

(BERT) models on up to eight GPUs. This was implemented using a

form of intra-layer parallelism where the two building blocks of the

Transformer model, the MLP and the self-attention, are distributed

over multiple GPUs.

Two approaches are considered for theMLP, splitting the weights

over the columns or over the rows. These approaches are visually

depicted in Figures 6b and 6c. If we were to distribute 𝐴 over the

rows, we get

𝑋 = [𝑋1, 𝑋2] and

𝐴 =

[
𝐴1

𝐴2

]
.

This would mean that we calculate GeLU() as,

𝑌 = GeLU(𝑋1𝐴1 + 𝑋2𝐴2),
and because GeLU() by design is non-linear,

GeLU(𝑋1𝐴1 + 𝑋2𝐴2) ≠ GeLU(𝑋1𝐴1) + GeLU(𝑋2𝐴2),
which means 𝑋1𝐴1 + 𝑋2𝐴2 needs to be calculated before we are

able to calculate GeLU(). Accordingly, such a calculation requires

the sending of either 𝑋1𝐴1 or 𝑋2𝐴2 over the network.

Conversely distributing 𝐴 over the columns as,

𝐴 = [𝐴1, 𝐴2],
allows the calculation of GeLU() as,

GeLU(𝑋𝐴) = [GeLU(𝑋𝐴1), GeLU(𝑋𝐴2)].
The next step is to distribute 𝐵 over the rows as,

𝑍 = Dropout(GeLU(𝑋𝐴1) · 𝐵1 + GeLU(𝑋𝐴2) · 𝐵2),
eliminating the need to reconstruct GeLU(𝑋𝐴) altogether. Naturally,
this was the approach that the authors have opted to use.

Since the self-attention block of the Transformer has a lot of

inherent parallelism, the𝑄 ,𝐾 , and𝑉 matrices are simply distributed

over the columns. To demonstrate their approach, the authors have

trained an 8.9B GPT-2 Transformer model on eight GPUs with 77%

performance scaling in terms of throughput.

Narayanan et al. [21], build on the 8-way intra-layer parallelism

technique from [28] and combine it with up to 64-way inter-layer

parallelism using an approach similar to [20], in order to fit up to

a 1T parameter model on A100 GPUs. With the addition of data

parallelism, the authors manage to achieve 52% hardware utilisa-

tion for the largest model. Additionally, they analyse combining

parallelism techniques using an analytical model and provide three

key takeaways:

• When considering different forms of model parallelism, tensor

(intra-layer) model parallelism should generally be used up to

degree 𝑔 when using 𝑔-GPU servers, and then pipeline (inter-

layer) model parallelism can be used to scale up larger models

across servers.

• The optimal microbatch size 𝑏, depends on the throughput

and memory footprint characteristics of the model, as well as

the pipeline depth 𝑝 , data-parallel size 𝑑 , and batch size 𝐵.

• When using data and model parallelism, a total model-parallel

size of 𝑀 = 𝑡 · 𝑝 should be used so that the model’s param-

eters and intermediate metadata fit in GPU memory. Data

parallelism can be used to scale up training to more GPUs.

Smith et al.’s paper [29] is a combined effort from NVIDIA and

Microsoft to train a large languagemodel by combining the former’s

Megatron framework with the latter’s DeepSpeed framework. The

authors utilise data, inter-layer, and intra-layer parallelisms to train

up to a 540B parameter model on 420 DGX A100 servers containing

eight A100s each.

We also have the research from Korthikanti et al. [14], which

details fitting a 1T parameter model. The main focus of this paper

is reducing activation memory and increasing parallelism through

two new parallelisation schemes. The activation memory is defined

as the memory that is required to store the tensor created during the

forward pass of the training algorithm. This does not include the

model parameters. For an input tensor 𝑋 ∈ R𝑠 ·𝑏 ·ℎ
, where 𝑠 is the

sequence length,𝑏 is the micro-batch size,ℎ is the hidden dimension

size and 𝑎 being the number of attention heads, the attention block

has an activation memory footprint of 11𝑠 · 𝑏 · ℎ + 5𝑎 · 𝑠2 · 𝑏 Bytes.

The MLP block and the layer-norm have footprints of 19𝑠 · 𝑏 · ℎ
and 4𝑠 · 𝑏 · ℎ Bytes, respectively. Accordingly, the total activation
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(a) Graphical representation of the MLP operator graph.
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(b) Intra-Operator parallelisation by splitting 𝐴 along the columns.
In this case, no communication is needed within the operator.

D2

D1
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X1 * GeLU

B1

*

YA2

* GeLU
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*+X2

(c) Intra-Operator parallelisation by splitting𝐴 along the rows. Since
the GeLU operator is non-linear, the activation tensors have to be
gathered and scattered first.

Figure 6: The operator graph of the Multi-Layer Perceptron
(MLP) and the two intra-operator strategies for it [28].

memory footprint for a single layer in a Transformer model then is

𝑠 · 𝑏 · ℎ(34 + 5

𝑎 · 𝑠
ℎ

).

The tensor parallelism from the previous approach is used again

as it is computationally efficient. Parts of the layer that are com-

putationally most expensive are parallelised. It also parallelises

the activations within these blocks, meaning that the per device

memory footprint can be expressed as,

𝑠 · 𝑏 · ℎ(10 + 24

𝑡
+ 5

𝑎 · 𝑠
ℎ𝑡

).

It does not however parallelise the Dropout or layer-norms. Hence,

even when lim𝑡→∞, the activation memory footprint is still 10𝑠 ·𝑏 ·ℎ.
The researchers note that the Dropout and layer-norm operations

are independent along the sequence dimension and partition the

activation tensor accordingly. They name this approach sequence

parallelism. Now, the per-device memory footprint of a layer is

expressed by,

𝑠 · 𝑏 · ℎ
𝑡

(34 + 5

𝑎 · 𝑠
ℎ

).

Lastly, pipeline parallelism is introduced. The concept of pipeline

parallelism has been discussed before, however, it does have an

implication on the activation memory footprint. For the first-stage,

the memory footprint is,

𝑠 · 𝑏 · ℎ · 𝐿
𝑡

(34 + 5

𝑎 · 𝑠
ℎ

),

where 𝐿 is the number of layers in the network. For subsequent

stages, memory requirements are slightly different. Although not

the entire footprint is captured by this equation, it does so for the

overwhelming majority and for simplicity sake, the authors use

this equation to reason about their implementation. To show the

effectiveness of their approach, four Transformermodels are trained

ranging from 22B to 1T parameters on 8 and 512 GPUs, respectively.

The authors manage to achieve 41.5% hardware utilisation for the

smallest model and 56.3% for the largest model, without the use of

any data parallelism.

5.2 Gopher
Rae et al.’s work [23] is an effort by Google to train a large language

model. Their approach differs in that the hardware and software

are custom. The authors use TPU hardware and custom JAX soft-

ware framework. The largest Gopher model uses 4-way inter-layer

parallelism over four TPU pods, as well as an unreported level of

intra-layer parallelism and data parallelism within a 1024 chip pod,

in order to train a model with up to 280B parameters.

5.3 PaLM
Chowdhery et al.’s work [8] is another effort by Google to train a

large language model on Google TPUs. The authors train a model

with up to 540B parameters using two TPUv4 pods, consisting of

3072 chips each. Notable here is that the authors do not use any

inter-layer parallelism, thereby avoiding the pipeline bubble prob-

lem during training. They use up to 12-way intra-layer parallelism

and 256-way data parallelism within a single pod and another 2-

way data parallelism to scale up to two pods. In terms of software,

the authors use their own Pathways framework [3], which is built

on top of JAX.

The paper [2] details the next version of the PaLM model, i.e.,

PaLM 2. Unfortunately Google has opted not to share any detail

about this model’s underlying compute infrastructure. We only

include it here for completeness sake.

5.4 GPT
While model parallelism is certainly employed by OpenAI for their

GPT-3 model, for both training and inference, the employed V100

GPUs [4] lack the memory to store the model in its entirety. We

can simply list these here for completeness sake, as OpenAI has

opted not to share any detail about their training infrastructure.

Similarly, no detail about the next-generation GPT-4 [22] model,

nor the infrastructure behind the model have been released.
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6 DISCUSSION
Asmentioned in Section 4, the communication costs of intra-operator

parallelism is so high that it is only possible to achieve it with the use

of high-speed interconnects. Within the Megatron family, the same

8-way intra-operator parallelism for Transformer layers by [21] is

used, a deep dive of which is provided in Section 3.2. This approach

relies on NVLink interconnects between the devices, limiting it

to a single compute node. For the Gopher/PaLM family however,

different hardware is employed, making it possible to apply up to

12-way intra-operator parallelism [8]. These clusters are specifi-

cally designed for neural network workloads and have very high

speed interconnects.

As discussed in Section 4, [20] mitigates the pipeline bubble

by keeping multiple batches in-flight and scheduling them asyn-

chronously. Alternatively, [11] takes a different approach, noting

that there is parallelism within a batch. The authors subdivide

batches into micro-batches, which can be pipelined much more

efficiently, as depicted in Figure 5d.

Considering Table 2, while implementations within a family

share details such as hardware and model architecture, different ad

hoc approaches have very few similarities, making them hard to

compare. To address this limitation, the use of the Model FLOPs

Utilisation (MFU) metric over Hardware FLOPs Utilisation (HFU)

is proposed in [8]. This metric takes into account that frequently

employed techniques such as remetarialisation are used to trade

off memory usage with compute. This creates a scenario where

using additional hardware FLOPs can save memory, increasing

HFU, without having an actual impact on the overall throughput

of the system. MFU is based on the actual throughput of the sys-

tem (tokens per second in the case of Transformers) compared to

the theoretical maximum of the system. This has been picked up

on by the latest Megatron paper [14]. However, Google’s authors

in their next paper [2], do not report anything about hardware

configuration, let alone the MFU they are able to achieve.

As is noted in [29], none of the three forms of parallelism in

neural networks can address all the challenges in training billion

parameter models and indeed, we see in Table 2 that of the papers in

the Megatron family, at least two forms of parallelism is considered.

The two papers that use the most GPUs by far, both employ all three

forms. Similarly, while considering their proprietary TPU hardware,

Google manages to avoid using inter-layer parallelism entirely for

PaLM and only uses 4-way for Gopher. They still heavily rely on

data parallelism in order to maintain throughput while scaling to

thousands of TPUs.

Zheng et al. [35] provide a comparison between ad hoc and

general strategies, comparing the approach with Megatron-LM [21]

and DeepSpeed [24]. Their Alpa is able to match the former and

outperform the latter. We must note the absence of any comparison

between Alpa, FlexFlow [13] and Tofu [33]. This is due to the fact

that at the time of their publication, FlexFlow did not support the

required operators and Tofu had not released their source code.

Thus, while Table 3 offers a comparison of listed frameworks, the

lack of standardised testing means that it is very hard to draw any

conclusions about how the different approaches actually compare

on specific metrics. Search methods especially have scattered into

all directions and it is almost impossible to discern which one is

better, since the search-space is defined differently for every case.

As discussed, comparing papers from DNN auto-parallelisation

quantitatively poses its challenges. Alternatively, we turn to a qual-

itative analysis of the papers found in this table. Tanaka et al. [30]

employ dynamic programming to automatically partition anymodel

formatted in the PyTorch model specification into a number of sub-

graphs. These subgraphs are load-balanced under the constraint of

the available memory on the devices at hand. Eliad et al. [9] consider

automatic inter-layer parallelism to create a framework to fine-tune

models for commodity hardware. They extend the strategy-space

of PipeDream by allowing non-adjacent layers to be scheduled onto

the same GPU. This means that pipeline stages can be made smaller,

allowing for more fine-grained load-balancing at the expense of in-

creased communication overhead. The authors use four competing

search methods to explore the new strategy-space. Three existing

methods are considered (as listed below), as well as one new search

algorithm, specifically tailored to their search-space.

• PipeDream [20]: Exhaustive search

• Acyclic [19, 18]: Greedy search

• Metis [25]: General graph partitioning scheme

These strategies are evaluated by profiling every operator in the

graph in isolation and utilising this data to calibrate a cost model.

Compared to PipeDream’s partitioning scheme, FTPipe Mixed-pipe

is able to fit a 3B parameter model on eight RTX 2080-Ti GPUs

with 11GB of memory each, connected over a PCI-e 3.0 bus. The

PipeDream partitioning scheme did not yield a valid parallelisation

strategy on this setup.

Zheng et al. [35] motivate their hierarchical search-space by

noting that “intra-layer and inter-layer parallelism take place at

different granularities of the DL computation and have distinct

communication requirements, which happen to match the structure

of today’s compute clusters”. The structure they refer to is a mesh

network. The search space is formulated as a two-level hierarchy in

order to express both inter- and intra-layer parallelism strategies.

The lowest level of the hierarchy Alpa takes an operator graph, a

device mesh and chooses an intra-layer strategy for every node

in the graph, such that the total execution cost of the graph is

minimised. It formulates this as an integer linear programming

problem and consider an off-the-shelf-solver, able to efficiently

solve for graphs consisting of thousands of operators. The second

level consists of finding an optimal partitioning of the operator

graph and mapping this to a sub-mesh of the compute cluster. The

search method used here is a dynamic programming algorithm that

takes as reward the predicted performance of a stage-mesh pair,

optimised by the lower level.

Jia et al.’s work [13] details an entirely new framework built

from the ground up for auto-parallelisation. This framework, called

FlexFlow, introduces itself with a deep learning engine that uses

a comprehensive search-space of parallelisation strategies, called

SOAP. The SOAP search-space consists of four parallelisable di-

mensions: Sample, Operator, Attribute, and Parameter. We had

mentioned the concept of parallelisable dimensions in Section 3.1.

• Sample dimension describes the amount of data samples.

• Parameter dimension is defined as requiring the splitting of

model parameters. We know this as intra-layer parallelism.
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Table 3: Overview of parallelisation frameworks, automatic and manual.

Parallelism

Mode Framework/Paper(s) Intra-operator Inter-operator Search method Strategy evaluation

Automatic

RaNNC [30] - ✓ Dynamic programming Profiling operators

FTPipe [9] - ✓ Multi-processor scheduling Profiling operators

Alpa [35] ✓ ✓ Dynamic programming Profiling-calibrated model

FlexFlow [13, 31] ✓ ✓ Markov chain Monte Carlo Calibrated simulation

TensorOpt [5] ✓ - Frontier tracking Profiling-calibrated model

Double recursive [32] ✓ - Double recursive Symbolic model

Manual

GPipe [11] - ✓ - -

PipeDream [10, 20] - ✓ - -

GSPMD [34] ✓ - - -

• Attribute dimension does not require the splitting of model

parameters. This essentially is a catch-all dimension when

there are additional ways to parallelise an operator.

• Operator dimension which represents operators wholly.

As already alluded to by the description of the attribute dimen-

sion, not every dimension exists for every operator’s output tensor.

Some dimensions may have multiple axes along which parallelisa-

tion could occur. As such, the full SOAP search-space consists of

the set P, comprising of ordered sets of parallelisable dimensions,

P𝑖 , which are mapped to the elements of O in an injective manner.

The search-space P can be formulated as

P = {𝑓 (𝑜𝑖 ) |∀𝑜𝑖 , 𝑜 𝑗 ∈ O, 𝑜𝑖 = 𝑜 𝑗 =⇒ 𝑓 (𝑜𝑖 ) = 𝑓 (𝑜 𝑗 )}.

Accordingly, a strategy S in FlexFlow is defined as a set of posi-

tive integer tuples, 𝑐𝑖 , such that

S = {𝑐𝑖 |∀P𝑖 ∈ P, 𝑐𝑖 ∈ Z | P𝑖 | }.

Here, 𝑐𝑖 describes the degree of parallelism for each of the paral-

lelisable dimensions present in 𝑃𝑖 , resulting in a number of indepen-

dent tasks equal to the product of the tuple’s elements. While other

works classify FlexFlow’s search-space as containing intra-layer

parallelism only [16], arguing it does not support pipeline paral-

lelism, we do include inter-layer parallelism. FlexFlow is capable

of organising operators from the operator graph into subgraphs

and assigning these to different devices. To evaluate parallelisation

strategies found in the search-space, FlexFlow utilises an execution

simulator, taking as input,

• a device graph,

• an operator graph, and

• a parallelisation strategy.

The first step is to construct a task graph, T , from the three

inputs. In the task graph, nodes represent tasks as defined by the

strategy, while edges represent a dependency between two tasks.

One important detail to note is that unlike the operator graph, edges

here do not represent the flow of data, but just the partial ordering

of the task set. The simulator uses a combination of profiling tasks

on target devices, estimating communication overhead from the

size of the tensors and the characteristics of the device connections.

This process provides an estimate for the total execution time of

the task graph. As the search method, FlexFlow employs a Markov

Chain Monte Carlo search algorithm, i.e., randomly sampling both

operators and strategies, followed by evaluation using the simula-

tor described above. FlexFlow is directly compatible with models

specified in PyTorch format, but also includes front-ends for both

ONNX and TensorFlow Keras support.

Cai et al. [5] optimise for both memory consumption and ex-

ecution time, providing a Pareto-optimal frontier of intra-layer

parallelisation strategies. The search strategy uses linear dynamic

programming, but a few steps are required to get there, as it re-

quires the strategy to be formulated as a linear function. Wang et

al. [32] provide a different search method, focusing on finding a

strategy with minimal processing time. Unlike TensorOpt, it does

not consider memory usage, optimising just for execution time.

7 CONCLUSION
Revisiting our research questions, we can conclude the following:

What types of model parallelism exist? There are two types of

model parallelism: intra-operator, which partitions within an oper-

ator, and inter-operator, which partitions over multiple operators.

Often, these types are combined into what is referred to as hybrid

parallelism, which can also include data-parallelism.

What are the challenges of model parallelism? Challenges include

technical trade-offs of the different kinds of model parallelism, with

intra-operator having extremely high communication requirements

and inter-operator suffering from low device utilisation during

training. Finding the optimal parallelisation strategy in hybrid par-

allelism is another major challenge as the operator-graph and the

device-graph most likely will not adequately map onto each other.

What is a modern use-case of model parallelism? Model paral-

lelism is currently widely used to train and run inference of multi-

billion Transformer models. We find that models from the Mega-

tron family, running on V100 and A100 chips, use intra-operator

parallelism within a single compute node and a combination of

inter-operator and data parallelism to scale beyond a single node.

The PaLM model is able to address the communication challenge

of intra-operator parallelism with specialised hardware and does

not use any inter-operator parallelism.
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Future work. The field of DNN auto-parallelisation could sig-

nificantly benefit from standardisation. As discussed in Section 6,

approaches are often so different that it is impossible to account

an advancement in the state-of-the-art to any specific part of the

approach. This is in part due to the nature of search problems. How-

ever, standardised representations for strategy, device, and model,

would help in this regard. For an example of the benefits such

standardisation would provide, we can look at other disciplines

that deal with search problems,w specifically Neural Architecture

Search (NAS). NAS also deals with neural networks and one idea

DNN auto-parallelisation could copy from NAS is to provide a data

set containing a fully explored search-space, similar to (HW-)NAS-

Bench [17, 15]. This would allow methods to be compared without

necessitating access to expensive hardware, opening up the field to

more people.
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